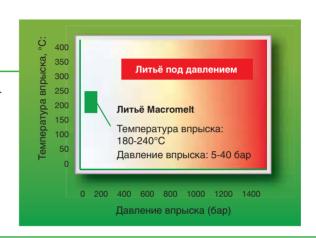


Технология литья под низким давлением Macromelt Molding

Что такое «литьё Macromelt Molding»?


Литьё Macromelt - это процесс литья под низким давлением с использованием термоклеев. Данный процесс обеспечивает превосходную герметизацию, хорошую защиту электрических/электронных компонентов, повышенную производительность по сравнению с традиционно используемыми для герметизации материалами, такими как 2-компонентные литьевые смолы или силиконы. Данный процесс безвреден для окружающей среды, а также позволяет снизить себестоимость продукции за счёт увеличения производительности.

Отличительные особенности

Низкое давление впрыска

Заливка хрупких/чувствительных к повреждениям компонентов

• Отсутствие повреждения компонентов

Повышенная производительность

Отсутствие химической реакции: однокомпонентный материал

- Простой и чистый процесс
- Короткое время цикла (10 50 секунд)

	2-компонентные литьевые смолы	Литьё Macromelt
Продолжительность процесса	Часы - дни	Секунды - минуты
Обслуживание оборудования	ежедневно	1 раз в неделю

Превосходные свойства материала

Водонепроницаемая герметизация и адгезия

• Отличная электроизоляция и водостойкость

Химическая стойкость

• В зависимости от химической основы, продукты литья отличаются стойкостью к бензину, маслам, спиртам, кислотам и щелочам

Отличные характеристики термостойкости

• Стойкость к термическим циклам, пластичность при низких температурах, термостойкость (от -40°C до +150°C)

Основа - нетоксичные возобновляемые сырьевые материалы

• Экологически безопасен

Пластичность

• Производство гибких и миниатюрных изделий

Низкая воспламеняемость

• степень огнестойкости UL94 V-0

Эффективное сопротивление деформации

Общее снижение затрат

- Устранение необходимости в традиционных оболочках и формах, используемых для заливки.
- Экономия энергии за счёт отсутствия затрат на процесс отверждения.
- Использование меньшего количества клеящего вещества для заливки печатных плат.
- Снижение затрат за счет изготовления литьевых форм из алюминия.

Пример применения -

Датчик: литьё с использованием 2-компонентного состава по сравнению с литьем Macromelt

	Общепринятая технология	Литьё под низким давлением Macromelt
Расход клеящего вещества/единиц	16г/един.(литьё)	4 г/един. (термоклей РА)
Цена клея/кг	€X	€2X
Цена клея/един.	€Y	€Y/2
Производственный цикл/ един.	2 ч	< 1 мин
Требуемые производственные площади	Занимает площадь для хранения корпусов и отверждения	Не требует площади для хранения корпусов и отверждения

Вышеперечисленные данные взяты из реального примера

Результаты после перехода к литью Macromelt:

- Экономия затрат на клей = 50%
- Экономия времени на производство
- Экономия производственных площадей
- Экономия на компонентах и энергии
- Значительно лучшие показатели водонепроницаемости

Преимущества технологического процесса литья Macromelt

Традиционный технологический процесс литья

Технологический процесс литья Macromelt

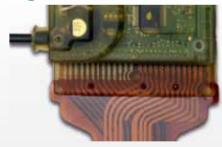
Что такое «литьё Macromelt Molding»?

Типы материалов, используемых в литье Macromelt

	Полиамид	Полиолефин	Термоклей РАХ
Продукт	Macromelt® OM	Macromelt® Q	Macromelt® OM730
Рабочая температура (°C)	От -40 до +150	От -20 до +100	От -20 до +150 стабилен по своей природе > +200
Температура литья (°C)	От +180 до +240	От +180 до +200	От +200 до +240
Диапазон вязкости (мПа.с)	От 1 000 до 7 000	От 5 000 до 15 000	прибл. 2,000
Твёрдость по Шору	A80 - D50	A60 - A90	D42
Адгезионные свойства	Превосходная адгезия к пластмассам, например, к АБС, ПБТ, ПВХ	Превосходная адгезия к полипропилену, полиэтилену, ПЭТ	Выдерживает повторную заливку
UL94	V-0	-	-

Три основные группы изделий, в изготовлении которых применим процесс литья Macromelt Molding

Заливка электронных компонентов

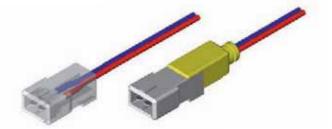

Благодаря низкому давлению не повреждаются чувствительные электронные компоненты и элементы. Литьё защищает электронные детали от внешних воздействий (влага, механические напряжения и т.п.) и выполняет роль корпуса.

Заливка разъёмов

Термоклеи применяются для герметизации и изготовления разъёмов.

Изготовление изолирующих втулок по месту эксплуатации

Данный процесс литья можно применять для изготовления изолирующих втулок по месту их эксплуатации. В результате экономится не только время (нет необходимости протаскивать втулку вдоль провода), но также устраняется опасность поражения электрическим током. Специальная геометрия втулки может придать ей дополнительные прочностные характеристики.



Применение литья Macromelt Molding

Электронная аппаратура автомобильного транспорта

Литьё Macromelt можно применять в изготовлении различных электронных систем и устройств для автомобилей, таких как системы контроля давления в шинах (TPMS), датчики присутствия водителя, датчиков контроля использования ремня безопасности, датчики качества воздуха, антенны для радиоприёмных устройств, системы электронной защиты (E-Key) и т.п.

1. Водонепроницаемые разъёмы

2. Микропереключатели

3. Датчик абсолютного угла

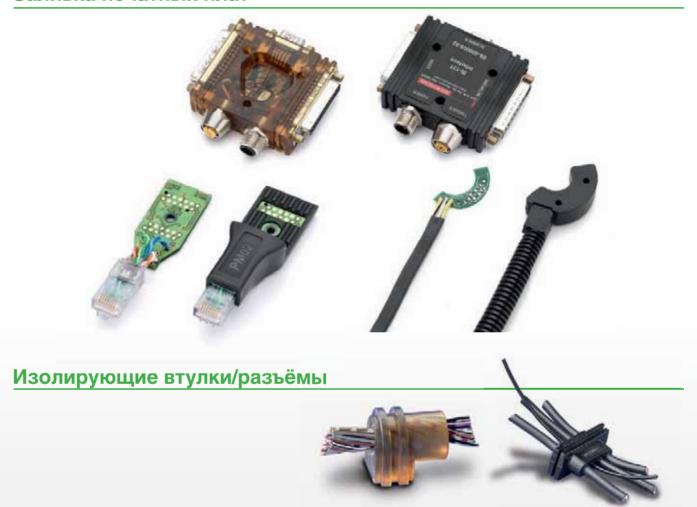
4. Интеллектуальный датчик состояния аккумуляторной батареи

6. Датчик температуры

5. Датчик качества воздуха

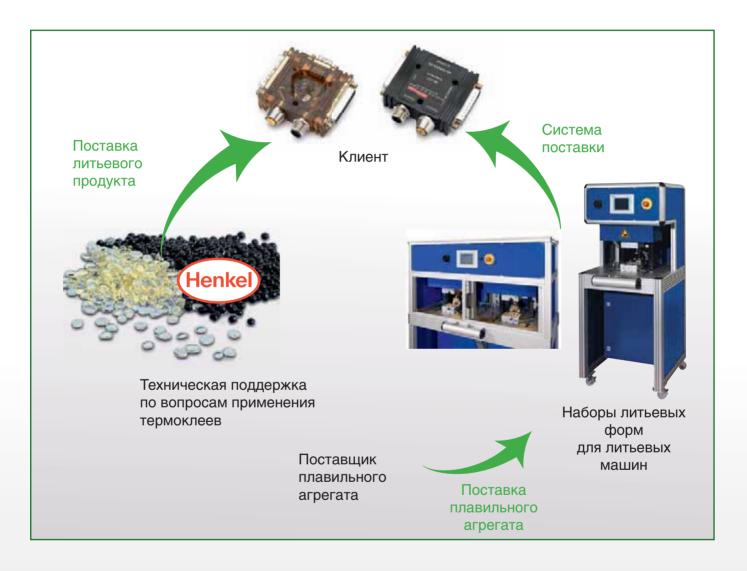
Применение литья Macromelt Molding

Электронная аппаратура автомобильного транспорта


Применение в мобильных телефонах

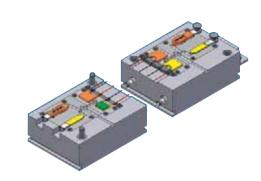
Литьё Macromelt применяется в батареях, антеннах, импульсных лампах и других компонентах мобильных телефонов, которые требуют влагозащиты, защиты от механических повреждений или инкапсулирования.

Батарея мобильного телефона


Заливка печатных плат

Литые соединительные элементы / водонепроницаемые датчики

Литьевая машина и набор литьевых форм



Система изготовления литьевых изделий состоит из продукта литья, набора литьевых форм, литьевой машины и плавильного агрегата. Плавильный агрегат для плавки термоклея обычно используется для впрыскивания термоклея в литьевую форму под более низким давлением, чем в традиционных литьевых машинах. Набор литьевых форм, обычно изготавливаемых из алюминия, облегчает процесс подготовки к работе, поскольку данный набор стоит дешевле, чем обычные наборы литьевых форм.

Набор литьевых форм

Для изготовления литьевых форм Macromelt может применяться алюминий благодаря

- низкому давлению впрыска литьевого материала
- лучшей теплопроводности алюминия
- отсутствию абразивных ингредиентов, например, наполнителей, стекловолокна, которые имеются в термоклее

Для изготовления литьевых форм может также применяться сталь. Если компонент, подлежащий заливке, содержит элементы из стали или закалённого стекла, то рекомендуется в данных полостях использовать стальные вставки.

Литьевые машины

Существует большое разнообразие литьевых машин:

- Для мелкосерийного производства с литьевой формой, открываемой вручную.
- Для более крупных серий, когда для литьевых форм применяется поворотный стол.

Дополнительную информацию по литьевым машинам вы можете получить у наших партнёров, поставляющих литьевые машины в вашу страну.

Системное решение

Компания Henkel оказывает поддержку своим клиентам на протяжении всей разработки проектов, начиная от изготовление образца и пробного набора литьевых форм и заканчивая консультативной помощью по созданию наборов для массового производства, используя весь свой опыт применения данной технологии литья под низким давлением.

Техническая информация

Ассортимент продукции

Применяемые для литья Macromelt продукты представляют собой термоклеи на основе натуральных жирных кислот. Они отличаются хорошей адгезией к пластмассам, таким как ПА 6.6, АБС и ПВХ, обладают превосходной пластичностью в условиях низких температур, рассчитаны на широкий диапазон рабочих температур, обладают превосходными литьевыми свойствами.

Общий обзор поли:	амида							
Продукт	Метод испытания	OM652 OM657	6208 6208S	OM633 OM638	OM641 OM646	OM673 OM678	OM648	OM730
Свойства								
Цвет	-	Янтарный Черный	Янтарный Черный	Янтарный Черный	Янтарный Черный	Янтарный Черный	Черный	Янтарный
Диапазон рабочих температур, °С	-	От -40 до +100	От -40 до +100	От -40 до +130	От -40 до +130	От -40 до +140	От -40 до +130	От -20 до +150
Температура размягчения, °C	ASTM E28	+155	+155	+175	+175	+185	+175	> +200 после отверждения
Вязкость при +210°C (мПа·с)	ASTM D3236	4 000	3 000	3 500	7 000	3 000	7 300	прибл. 2 000
Твёрдость по Шору	ISO 868/15s	A77	A82	A90	A92	A90	A93	D42
Сопротивление ползучести (°C)	Henkel Метод МН11	+125	+130	+155	+155	+130	+155	>+200
пластичность при температуре, °C	ASTM D3111	-50	-40	-30	-35	-40	-30	-15
Горючесть	UL94 File E182771	V-0	V-0	V-0	V-0	V-0	-	-
Температура хранения, °C	Henkel метод МН40							-40 1000 ч
Специальные свойства		Хорошая гибкость при низкой температуре	Значение РТИ для 6208S: 95°C				Стабилизация под воздействием УФ излучения	Затвердевание по, действием влаги
Адгезионные свой	ства							
Материал								
ПА6.6		Хорошая	Хорошая	Средняя	Средняя	Средняя	Средняя	Средняя
ПВХ		Хорошая	Хорошая	Хорошая	Превосходная	Хорошая	Средняя	Хорошая
АБС		Хорошая	Хорошая	Средняя	Средняя	Средняя	Средняя	Средняя

Различные свойства клеев – капельный тест, прочность на разрыв, прочность на сдвиг – могут быть измерены по запросу клиента или могут быть указаны после проведения испытаний в наших условиях.

Электрические свойства:

Удельное объёмное сопротивление, согласно DIN IEC 60093 ~ 10¹² Ом-см Диэлектрическая прочность, согласно DIN IEC 60243-1 ~ 20 кВ/мм Нет данных по электрическим свойствам ОМ648 и ОМ720.

Вышеприведённые данные основаны на наших знаниях и опыте. Вследствие различий в материалах и условиях, о которых мы не можем быть информированы и контролировать, мы настоятельно рекомендуем проводить собственные испытания, а также обращаться за консультацией к нашим техническим специалистам службы технической поддержки клиентов. За исключением умышленных действий, мы не несем ответственность за действия, основанные на подобных рекомендациях или устных указаниях.

Литьевые смолы

Henkel также предлагает линейку литьевых смол на основе эпоксидной смолы и полиуретана. Путём изменения химического состава свойства данных смол могут быть изменены в широком диапазоне. Они могут быть как очень твёрдыми и ударопрочными, так и мягкими и эластичными. Благодаря низкой технологической вязкости данные смолы способны заполнять даже мельчайшие зазоры.

Примеры применения в литье:

1. Антенная катушка

2. Разъём и микропереключатель

3. Трансформаторы

Техническая информация

	40.00						
Общий обзор характеристик литьевых смол							
Продукт	CR 8101	CR 3127	CR 3311	CR 5441	CR 6127		
Отвердитель	UK 5400	CR 4300	UK 5600	CR 4300	CR 4300		
Соотношение компонентов (по весу)	4:1	5:1	100:25	100:45	85:15		
Свойства							
Цвет	Светло-коричневый	Светло-коричневый	Бесцветный	Светло-коричневый	Белый и черный		
Вязкость при 20°С, смесь (мПа·с)	2650	3400	3200	1000	2400		
Время жизни в смеси, при 20°C (мин)	60	90	30	25	2-15-90		
Твёрдость по Шору	D 35 - 45	D 60 - 70	000 40	D 50 - 60	A 84		
Степень огнестойкости: UL94		V-0			V-0		

Вышеприведённые данные основаны на наших знаниях и опыте. Вследствие различий в материалах и условиях, о которых мы не можем быть информированы и контролировать, мы настоятельно рекомендуем проводить собственные испытания, а также обращаться за консультацией к нашим техническим специалистам службы технической помощи клиентам. За исключением умышленных действий, мы не несем ответственность за действия, основанные на подобных рекомендациях или устных указаниях.

Henkel Ваш надежный партнер

ООО «Хенкель Рус»

107045, Россия, Москва, Колокольников пер., 11

Тел.: +7 (495) 745-23-13/14/15/16

Факс: +7 (495) 745-55-89

www.henkel.ru www.loctite.ru www.loctite.su

msk.henkel-technologies@henkel.com

ООО «Хенкель Украина»

01032, г. Киев, ул. Саксаганского, 120

Тел.: +38 044 569-96-57 Факс: +38 044 569-96-07 www.loctitesolutions.com

www.loctite.su www.henkel.ua