MATERIALS FOR NEXT GENERATION INDUSTRIAL AUTOMATION FORMULATED FOR CONTINUOUS PERFORMANCE AND SUSTAINABLE RESULTS # **CONTENTS** | Driving and Controlling Industry 4.0 and Beyond | 3 | |---|------| | Material Solutions for Industrial Automation | 4 | | MATERIALS FOR POWER AUTOMATION | | | Bonding Materials | 9 | | Connecting Materials | 12 | | Protecting Materials | . 14 | | Thermal Materials | 20 | #### DRIVING AND CONTROLLING INDUSTRY 4.0 AND BEYOND Today's motor drives and industrial controls are undergoing significant transformation as manufacturing moves from conventional linear operation to a connected, integrated Industry 4.0 ecosystem. The Smart Factory environment dictates precise control, real-time communication functionality and actionable analysis capability, all of which must be integrated into increasingly smaller footprints. At the same time, the ruggedness and durability of these systems must continue to be prioritized, as harsh environments are often the norm. The achievement of these objectives is having a profound effect on the electronic foundation of modern-day drives and controls. Component and power densities are increasing, high reliability is a prerequisite and resilience to constant operation and tough environments is the expectation. The convergence of these factors requires advanced materials that can securely bond disparate surfaces, move heat away from critical components, ensure reliable electronic interconnects and protect systems from chemicals, moisture and stress. Delivering on these requirements, Henkel's broad, high-performance portfolio of materials bonds, connects, protects and cools next-generation industrial automation technologies, enabling the factory of the future. # MATERIAL SOLUTIONS FOR PROGRAMMABLE LOGIC CONTROLLER (PLC) # **MATERIAL SOLUTIONS FOR SERVO DRIVE** # MATERIAL SOLUTIONS FOR VARIABLE-FREQUENCY DRIVE (VFD) # **MATERIAL SOLUTIONS FOR DC DRIVE** # MATERIAL SOLUTIONS FOR MOTOR CONTROLLER ## **BONDING MATERIALS FOR INDUSTRIAL AUTOMATION** #### **BONDING MATERIALS** Motor drives, motor controls, PLCs, PACs and industrial PCs are the brains of the production operation, controlling electromechanical processes, motor speed and precision. In order to work reliably on demand, structural integrity is vital. Screws and clips must stay in place; critical components like transformers and magnetic coils require strong bonds to remain in position during operation; and housings and covers that offer internal system protection must be secure. Henkel's threadlockers, staking adhesives and structural bonding formulations provide strong adhesion on multiple surfaces with resistance to degradation from operational wear and tear. Available in multiple chemistry platforms, including silicone-free, Henkel bonding materials are a strong, space-saving, reliability-enhancing alternative to conventional joining techniques. | BONDING | ASSEMBLY | Г | ACRYLIC | - LOCTITE® AA 3103 | | |--------------------------|--------------|---|---------|---|----------------------| | MATERIALS
FOR | ADHESIVES | 4 | EPOXY | | TE ABLESTIK
G 500 | | INDUSTRIAL
AUTOMATION | CHIPBONDER | H | EPOXY | - LOCTITE3609 - LOCTITE3616 - LOCTITE3627 | | | ACTONIATION | THREADLOCKER | - | ACRYLIC | - LOCTITE 243 – LOCTITE 248 | | ## **ASSEMBLY ADHESIVES** | Product Name | Description | Chemistry | Viscosity
(cPs) | Volume Resistivity
(Ω•cm at 25°C) | Application | Cure Schedule | |-----------------------|---|-----------|--------------------|--------------------------------------|----------------------|------------------------| | Acrylic | | | | | | | | LOCTITE® AA 3103 | Cures rapidly to form flexible, transparent bonds when exposed to ultraviolet light and/or visible light of sufficient irradiance and has shown excellent adhesion to a wide variety of substrates including glass, many plastics and most metals | Acrylic | 11,250 | - | Assembly
Adhesive | 50 mW/cm²
at 5 sec. | | Ероху | | | | | | | | LOCTITE ABLESTIK 2151 | Thixotropic, two-part adhesive that develops strong, durable high-impact bonds at room temperature, improving heat transfer while maintaining electrical insulation | Ероху | 40,000 | 2.10×10 ¹⁵ | Assembly
Adhesive | 24 hr. at 25°C | | LOCTITE ABLESTIK 2332 | Solventless epoxy adhesive that develops high bond strength when cured at temperatures as low as 100°C. This product combines toughness at low temperatures plus high peel and tensile shear strengths over a very broad temperature range | Ероху | 75,000 | 6.00×10 ¹⁴ | Assembly
Adhesive | 1 hr. at 120°C | ## **CHIPBONDER** | Product Name | Description | Chemistry | Viscosity
(cPs) | Glass Transition
Temperature, T _g
(°C) | Cure
Schedule | |--------------|---|-----------|--------------------|---|--------------------| | Ероху | | | | | | | LOCTITE 3609 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering. Particularly suited for applications where medium to high dispense speeds, high dot profile, high wet strength and good electrical characteristics are required | Ероху | 1,080 (Casson) | 73 | 2 min.
at 150°C | | LOCTITE 3616 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering. Particularly suited to printing a range of dot heights with one stencil thickness | Ероху | 35,000
(Casson) | 140 | 2 min.
at 150°C | | LOCTITE 3627 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering. Particularly suited for applications where high dispense speeds, high dot profile, high wet strength and good electrical characteristics are required. The product is also suitable for stencil print applications | Ероху | 3,500 (Casson) | 105 | 2 min.
at 150°C | #### **THREADLOCKER** | Product Name | Description | Chemistry | Color | Cure Speed | Viscosity cP at 25°C | |--------------|---|-----------|--------------------------|---|----------------------| | Acrylic | | | | | | | LOCTITE® 243 | General purpose threadlocker of medium bond strength. This threadlocker secures and seal bolts, nuts and studs to prevent loosening due to vibration. | Acrylic | Blue | 24 hr. | 1,300 – 3,000 | | LOCTITE 248 | Medium strength anaerobic threadlocking material. It is supplied as a wax-like semi-solid, conveniently packaged in a self-feeding stick applicator | Acrylic | Blue, wax
consistency | 168 hr. at 22 °C;
Breakaway Torque, ISO
10964, Unseated | - | #### CONNECTING MATERIALS FOR INDUSTRIAL AUTOMATION #### **CONNECTING MATERIALS** Addressing the demands for expanded function and reduced footprints, higher density printed circuit boards with fine-pitch interconnects are being employed for modern-day, Industry 4.0-capable motor controls and high-power drives. Solder materials and electrically conductive adhesives used to enable electrical function require formulations that allow precise deposits that facilitate high-integrity electrical interconnection. In addition, as manufacturers prioritize sustainability and cost-efficiency, Henkel materials manufactured with conflict-free metals that offer high reliability, low yield, temperature stability, processing ease and low cost of ownership are increasingly being specified as the go-to products for industrial applications. | CONNECTING
MATERIALS
FOR | ELECTRICALLY - CONDUCTIVE - | LOCTITE ABLESTIK
84-1LMI | LOCTITE ABLESTIK 56C/CAT9 | LOCTITE ABLESTIK CA 3556HF | | |--------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------| | INDUSTRIAL AUTOMATION | ADHESIVES | LOCTITE ABLESTIK CE 3103WLV | LOCTITE ABLESTIK CE 3104WXL | LOCTITE ABLESTIK ICP 4000 | LOCTITE ABLESTIK CE 8500 | #### **ELECTRICALLY CONDUCTIVE ADHESIVES** | Product Name | Description | Technology | Viscosity at 25°C
(cPs) | Modulus at 25°C
(MPa) | Volume
Resistivity
(Ω•cm) | Cure Schedule | |--------------------------------|---|-------------------|----------------------------|--------------------------|---------------------------------|---| | LOCTITE ABLESTIK
56C CAT9 | Designed to make electrical connections where hot soldering is impractical or to make electrical connections to conductive plastics at locations which cannot be subjected to high temperatures, passes NASA outgassing standards | Ероху | - | - | 0.0004 | 2 hr. at 50C | | LOCTITE ABLESTIK
CA 3556HF | An electrically conductive adhesive designed for applications that require a very fast cure at low temperatures. It is ideally suited for high throughput production processes and applications where high peel strength is desired | Acrylate | 31,500 | 650 | 0.0025 | <15 sec. at
130°C | | LOCTITE ABLESTIK
CE 3103WLV | An electrically conductive epoxy adhesive that is a Pb-
free alternative to solder | Ероху | 20,000 | 4,500 | 0.0008 | 10 min. at
120°C or 3 min.
at 150°C | | LOCTITE ABLESTIK
CE 3104WXL | An electrically conductive epoxy adhesive that is a Pb-free alternative to solder. This product uses tightly controlled particle sizes to provide ultra-fine pitch resolution (< 500 µm) when printed using either a stainless-steel mesh screen or a metal mask stencil | Ероху | 65,000 | 4,500 | - | 5 min. at 125°C | | LOCTITE ABLESTIK
ICP 4000 | A silicone based, electrically conductive adhesive. It is specially designed for applications where both high flexibility and excellent conductivity are required. This material is also recommended for use in mounting small components to a variety of interconnect substrates | Silicone | 30,000 | 120 | 6×10 ⁻⁵ | 35 min. at
140°C | | LOCTITE ABLESTIK
84-1LMI | Designed for microelectronic chip bonding applications.
This adhesive is ideal for application by automatic
dispenser or hand probe | Ероху | 30,000 | 4,695 | 0.0005 | 1 hr. at 150°C or
2 hr. at 125°C | | LOCTITE ABLESTIK
CE 8500 | Solventless epoxy adhesive that combines low stress with good adhesion on nearly all surfaces | Modified
Epoxy | 120,000 -
140,000 | - | 3.5×10 ¹³ | 1 hr. at 150°C | #### PROTECTING MATERIALS FOR INDUSTRIAL AUTOMATION #### PROTECTING MATERIALS Industrial motors, drives, and controls – regardless of the industry – often stay in service well past their design life, so a long lifespan is the expectation and protection of all components is an essential manufacturing consideration. From conformal coatings to shield PCBs from moisture and contaminants, to the potting of integrated drives and traction applications for ultimate environmental defense, to gasketing materials that allow system servicing if required, Henkel's comprehensive portfolio of protection materials can help satisfy the high-performance and longevity demands of the future-proofed factory. #### **CONFORMAL COATING** | Product Name | Description | Technology | Cure Schedule | Viscosity
at 25°C
(cP) | Operating Temperature | |-------------------------------|---|----------------------|---|------------------------------|-----------------------| | LOCTITE®
STYCAST PC 40-UMF | Formulated to rapidly gel and immobilize when exposed to UV light and then fully cure when exposed to atmospheric moisture, ensuring optimum performance even in shadowed areas | Urethane
Acrylate | 10 sec. at
300 – 600 mW/cm² [UV 365nm]
2 – 3 days at RT | 250 | -40 − 135°C | | LOCTITE
STYCAST PC 62 | Designed to provide environmental and mechanical protection | Acrylic | 24 hr. at 25°C
45 min. at 75°C | 52 | -40 – 125°C | | LOCTITE
STYCAST SI 5293 | UV + moisture cure silicone conformal
coating. Designed to provide environmental
protection for printed circuit boards and other
sensitive electronic components | Silicone | Functional strength: 20 – 40s
at > 70 mW/cm² [UV 365nm]
Tack free: 10 – 24h at 22 °C / 50±5 % RH
Full strength: 3 days at 22 °C / 50±5% RH | 400 - 800 | -40 – 200°C | | LOCTITE
STYCAST SI 5296 | Designed to be applied by a variety of selective robotic dispense methods and can also be applied via brush, dip or manual spray | Silicone | Tack free: 7 min. at 125 °C,
13 min. at 108 °C | 150 – 235 | -40 – 200°C | | LOCTITE
STYCAST UV 7993 | Designed to provide rugged protection from
moisture and harsh chemicals. It is
compatible with industry standard solder
masks, no-clean fluxes, metallization,
components and substrate materials | Urethane | 10 – 20 sec. at
150 – 300 mW/cm² [UV 365nm]
100 hr. at RT / 50% RH
50 hr. at RT / > 70% RH | 120 | -40 – 130 °C | ## **LOW PRESSURE MOLDING** | Product Name | Description | Operating Temperature | Durometer | Viscosity at
Temperature
(cP) | Color | |--------------------------------|--|-----------------------|------------|-------------------------------------|-------| | TECHNOMELT®
PA 646* | High durometer polyamide overmolding material | -40°C − 125°C | Shore A 92 | 4,500 at 225°C | Black | | TECHNOMELT
PA 678* | High operating temperature range polyamide overmolding material | -40°C – 140°C | Shore A 88 | 3,400 at 210°C | Black | | TECHNOMELT
PA 2692* | Very high operating temperature range low moisture uptake polyamide overmolding material | -20°C- 175°C | Shore D 67 | 4,250 at 240°C | Amber | | TECHNOMELT
PA 6208 N BLACK* | High performance
thermoplastic polyamide is designed to meet low
pressure molding process requirements | 190°C – 230°C | Shore A 78 | 3,600 at 210°C | Black | | TECHNOMELT
PA 6481* | UV stabilized material for direct sunlight applications | -40°C – 125°C | Shore A 90 | 7,300 at 210°C | Black | | TECHNOMELT
PA 687* | Thermoplastic, hot melt adhesive is designed for molding compound applications | -40°C – 140 °C | Shore A 87 | 4,900 at 225°C | Black | ^{*}For details regarding UL certification of Henkel's family TECHNOMELT materials, please refer to UL file E182771 or contact our technical customer service group #### **ENCAPSULANT** | Product Name | Description | Viscosity at
25°C
(cP) | Glass Transition
Temperature, Tg | of Merman Expansion, CTE | | Pot Life
at 25°C | Cure Schedule | |------------------------------|--|------------------------------|-------------------------------------|--------------------------|----------|---------------------|--| | | | (CP) | (*C) | Above Tg | Below Tg | (Days) | | | LOCTITE ECCOBOND
EO 1061 | Medium glob Chip-On-Board 1K epoxy
encapsulant | 50,000 | 125 | - | 40 | 25 days
at 25°C | 3 hr. at 140°C | | LOCTITE ECCOBOND
EO 1072 | One component epoxy with unique rheology that allows the product to be used both as a dam and fill encapsulant | 100,000 | 135 | 123 | 43 | 30 days at
25°C | 5 min. at 150°C | | LOCTITE ECCOBOND
EN 3838T | Designed to provide a flexible, low Tg
material for encapsulating components
on a PCB | 6,700 | 2 | 217 | 57 | 3 days
at 25°C | 8 min. at 130°C | | LOCTITE ECCOBOND
EN 3839 | Specially designed for encapsulating components on PCB applications. Stable electrical performance in temperature humidity bias | 7,800 | 26 | 211 | 108 | 2 days
at 25°C | 2,000 mJ/cm ² -
365 nm
> 10 min. at 130°C | | LOCTITE ECCOBOND
FP4450 | Encapsulant designed for protection of bare semiconductor devices. High purity, low stress with good moisture resistance | 43,900 | 155 | _ | 22 | 3 days
at 25°C | 31 min. at 125°C + 90 min. at 165°C | | LOCTITE ECCOBOND
FP4451 | Damming material designed as a flow control barrier around areas of bare chip encapsulation. It is a high purity green product with minimal slumping. Use together with LOCTITE ECCOBOND FP4450 | 1,300,000 | 155 | - | 22 | 2 days
at 25°C | 30 min. at 125°C +
90 min. at 165°C | | LOCTITE ECCOBOND
UV 9060F | Fast cure, no flow, UV/moisture cure
encapsulant designed for local circuit
board protection. This product is
fluorescent when viewed with ultraviolet
(black) light | 11,000 | 75 | 198 | 81 | - | 5 – 25 sec.
at 566 mW/cm² | # GASKETING/SEALING | Product Name | Description | Flame Retardancy | Water Absorption | Compression Load
Deflection | Temperature
Resistance | Compression set
(DVR) | |--------------|---|------------------------------|--|---|---|-------------------------------------| | FERMAPOR K31 | Two-component room-temperature crosslinking polyurethane soft foam system | Up to UL-94 HF-1
possible | From < 3.5 %,
hydrophobic
versions available | From 5 – 200 kPa
(at 25% compression) | From -40°C - +100°C
(short time up to
+160) | < 97 % depending on test conditions | | FERMASIL | Two-component room-temperature crosslinking silicone foam system | Up to UL-94 V-0
possible | App. 1 | From 20 – 150 kPa
(at 25% compression) | From -60°C - +180°C
(short time up to
+350) | < 97 % depending on test conditions | | Product Name | Description | Chemistry | Viscosity
(cP) | Cure Condition (25°C
/ 50±5 % RH) | Cure Type | |-----------------|--|----------------|-------------------|--------------------------------------|-----------| | LOCTITE® 5810F | Form in place gasketing primarily designed for sealing plastic and metal housings on electronic components | Polyacrylate | Paste | ≤ 120 min. | RTV | | LOCTITE SI 5910 | One-component, silicone sealant designed for sheet
metal covers with good oil resistance | Oxime Silicone | Paste | ≤ 40 min. | RTV | | LOCTITE SI 5699 | One-component, silicone sealant has excellent adhesion and can be used to seal electronic components | Oxime Silicone | Paste | ≤ 30 min. | RTV | ## **POTTING MATERIALS** | Product Name | Description | Technology | Cure Schedule | Viscosity
at 25°C
(cP) | Working Life | Shore Hardness | Flammability Rating | |-------------------------------------|---|------------|---|------------------------------|-----------------------------------|----------------|--------------------------------| | Epoxy - two part | | | | | | | | | LOCTITE STYCAST
2651-40/CAT 11 | General purpose epoxy
potting material | Ероху | 12 hr. at 80°C
3 hr. at 100°C
45 min. at 120°C | 4,000 | > 4 hr. for 100 g
mass at 25°C | 88D | - | | LOCTITE STYCAST
1090 SI/CAT 11 | Lightweight epoxy potting material | Ероху | 8 – 16 hr. at 80°C
2 – 4 hr. at 100°C
30 – 60 min. at 120°C | 3,500 | > 4 hr. for 100 g
mass at 25°C | 80D | - | | LOCTITE STYCAST
2850FT/CAT 11 | Thermally conductive epoxy potting material | Ероху | 8 – 16 hr. at 80°C
2 – 4 hr. at 100°C
30 – 60 min. at 120°C | 64,000 | 4 hr. for 100 g
mass at 25°C | 96D | - | | LOCTITE STYCAST
2505 /CAT 11 | Flame-retardant general-
purpose epoxy potting
material | Ероху | 8 - 16 hr. at 80°C
2 - 4 hr. at 100°C
30 - 60 min. at 120°C | 5,000 | > 4 hr. for 100 g
mass at 25°C | 72D | UL 94 V-0
at 6 mm thickness | | LOCTITE STYCAST
2534 FR/CAT 24LV | Flame-retardant general-
purpose epoxy potting
material | Ероху | 4 hr. at 65°C | 3,290 | - | 91D | UL 94 V-0
at 6 mm thickness | | LOCTITE STYCAST
ES 4512 | Flame-retardant general-
purpose epoxy potting
material | Ероху | Gel time: 5 hr. at 25°C
36 – 48 hr. at 25°C,
3 hr. at 60°C | 19,000 | 1 hr. for 200 g
mass at 25°C | 88D | - | | Product Name | Description | Technology | Cure Schedule | Viscosity
at 25°C
(cP) | Pot life
at 25°C | Shore
Hardness | | | |----------------------------|---|------------|---|------------------------------|---------------------|-------------------|--|--| | Epoxy - One part | | | | | | | | | | LOCTITE STYCAST
EO 1058 | One component heat cured epoxy potting material. Provides excellent environmental and thermal protection to encapsulated parts | Ероху | Gel time:
12 min. at 121°C
2 hr. at 140°C
3 hr. at 125°C | 50,000 | 10 days | 90D | | | | LOCTITE STYCAST
EO 7038 | One component heat cured epoxy potting material | Ероху | 3 hr. at 130°C
2 hr. at 140°C
2 hr. at 90°C + 2 hr. at 130°C | 40,000 | 3 days | 92D | | | | Polyurethane | | | | | | | | | | LOCTITE STYCAST
US 2350 | Flexible, flame retardant, mineral filled, polyurethane compound. This potting compound has long pot life, and is low viscosity so it flows well and adheres to many substrates | Urethane | Gel time: 90 min. at 23°C
(300 g)
Cure: 12 – 24 hr. at 23°C or
1 – 3 hr. at 65 – 85°C | 2,400 | 45 min. | 85A | | | | LOCTITE STYCAST
US 5544 | Fast gelling, flexible, flame retardant, mineral-filled,
polyurethane compound. This system is low in viscosity
and adheres well to many substrates | Urethane | Gel time: 4 – 6 min.
Cure: 2 – 4 hr. at 23°C or
30 min. at 60 – 85°C | 2,000 | 2 – 3 min. | 79 – 89A | | | | LOCTITE STYCAST
US 5538 | Flexible, unfilled, potting compound. This system is low in viscosity for good flow and good adhesion to many substrates | Urethane | Gel time: 45 – 75 min. at 25°C
(105 g)
Cure: 24 – 48 hr. at 25°C or
1 – 3 hr. at 60 – 85°C | 450 | 20 – 40
min. | 65A | | | | Silicone | | | | | | | | | | LOCTITE STYCAST
SI 5088 | UV + moisture cure silicone for shallow potting | Silicone | 20 sec. at > 30 mW/cm²
[UV 365nm] | 50,000 -
80,000 | _ | 25A | | | #### **UNDERFILL** | Product Name | Description | Cure Schedule | Viscosity
at 25°C | Coefficient
of Thermal Expansion, CTE
(ppm/°C) | | Glass Transition
Temperature, T _g | Pot Life | | |------------------------------|--|---|----------------------|--|----------|---|----------|--| | | | | (cP) | Above T _g | Below Tg | (°C) | | | | Ероху | | | | | | | | | | LOCTITE® ECCOBOND
UF 1173 | Designed to provide a uniform and void-
free encapsulant underfill, maximizing the
device's temperature cycling capability,
distributing stress away from solder connects
thus enhancing solder joint reliability in CSP
and BGA packages | 5 min. at 150°C | 7,500 | 103 | 26 | 160 | 2 | | | LOCTITE ECCOBOND
E 1216M | Non-anhydride underfill designed for high
volume assembly operations requiring a very
fast flowing underfill that fully cures in a
single reflow cycle | 4 min. at 150°C | 4,000 | 131 | 35 | 125 | 5 | | | LOCTITE 3517M | Reworkable, low temp cure underfill designed
for use as a solder joint protection against
mechanical stress in handheld electronic
device applications | 10 min. at 100°C | 2,600 | 191 | 65 | 78 | 7 | | | LOCTITE ECCOBOND
UF 3812 | Reworkable epoxy underfill designed for CSP, WLCSP and BGA applications. This low viscosity material is formulated to flow at room temperature with no additional preheating required | >10 min. at 130°C | 350 | 175 | 48 | 131 | 3 | | | EDGEBOND | | | | | | | | | | LOCTITE 3128NH | Low temperature cure <i>EDGEBOND</i> material ideal for use on heat sensitive components | 20 min. at 80 °C | 17,000 | 130 | 40 | 45 | 21 | | | LOCTITE DSP
190024/S | UV cure edge bond material designed for
high throughput assembly operations | Light Source and
Condition: Zeta 7411
UV Flood System
Light Intensity,
(mW/cm²) – 30
UV Wavelength,
(nm) – 365
Time, (sec.) – 80 | 44,000 | 66 | 151 | 77 | 30 | | | CORNERBOND | | | | | | | | | | LOCTITE 3508NH | Designed to cure during Pb-free solder reflow while allowing self-alignment of IC components. It can be pre-applied to the board at the corners of the pad site using a standard SMA dispenser | 3 hr. at 180°C | 70,000 | 175 | 65 | 118 | - | | #### THERMAL MATERIALS FOR INDUSTRIAL AUTOMATION #### THERMAL MANAGEMENT The increased power densities for smaller, higher functioning motor controls and drives often result in more heat generation. This, combined, with 24/7 operational expectations make thermal management a key factor for reliable performance. Award-winning *BERGQUIST* thermal management materials from Henkel in pad, liquid, gel and phase change formulations offer a solution for any heat-producing application within drive and control systems. High thermal conductivity for maximum heat dissipation, conformability for low stress, low volatility and silicone-free chemistries to limit outgassing concerns, and UL-certified safety ratings are all attributes available within Henkel's broad portfolio of thermal materials. #### **BOND-PLY** | Product Name | Description | Thermal
Conductivity | Dielectric Breakdown
Voltage | Thickness | Recommended
Cure | Flame Rating | |---|---|-------------------------|---------------------------------|---------------------|---------------------|--------------| | BERGQUIST
BOND-PLY
TBP 1400LMS-HD | Acrylic laminated heat cure adhesive thermal material | 1.4 W/mK | 4,000 Vac
at 0.254 mm | 0.254 –
0.457 mm | 30 min. at 125°C | UL 94 V-0 | ## **GAP PAD®** | Product Name | Description | Thermal Conductivity | Modulus | Dielectric Breakdown
Voltage | Thickness | Flame Rating | |----------------------------------|---|----------------------|-------------------------|---------------------------------|------------------------|--------------| | BERGQUIST GAP PAD TGP 1000VOUS | Silicone <i>GAP PAD</i> 1 W/mK | 1 W/mK | 8 (psi)
55 (kPa) | 6,000 Vac | 0.508 mm –
6.35 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP 2200SF | Silicone free GAP PAD 2 W/mK | 2 W/mK | 33 (psi)
228 (kPa) | 5,000 Vac | 0.254 mm –
3.175 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP 3004SF | Silicone free GAP PAD 3 W/mK | 3 W/mK | - | 6,000 Vac | 0.254 mm –
3.175 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP HC3000 | High compliance silicone GAP PAD 3 W/mK | 3 W/mK | 16 (psi)
110 (kPa) | 5,000 Vac | 0.508 mm –
3.175 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP HC5000 | High compliance silicone <i>GAP PAD</i> 5 W/mK | 5 W/mK | 17.5 (psi)
125 (kPa) | 5,000 Vac | 0.508 mm –
3.175 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP 6000ULM | Ultra-low modulus silicone <i>GAP PAD</i>
6 W/mK | 6 W/mK | 6 (psi)
41.3 (kPa) | 5,000 Vac | 1.524 mm –
3.175 mm | UL 94 V-0 | | BERGQUIST
GAP PAD TGP 7000ULM | Ultra-low modulus silicone GAP PAD
7 W/mK | 7 W/mK | 22 (psi)
152 (kPa) | 5,000 Vac | 1.020 mm –
3.175 mm | UL 94 V-0 | #### **GAP FILLER** | Product Name | Description | Thermal Conductivity | Viscosity | Dielectric Strength
(V/mil) | Cure Schedule | Flame Rating | |--|--|----------------------|---|--------------------------------|------------------------------------|--------------| | BERGQUIST
GAP FILLER TGF 1450 | Two-part, silicone gap filler
1.5 W/mK | 1.5 W/mK | 30 (High Shear) at
3000/s
200 (Low Shear)
at 1/s | 275 | 5 hr. at 25°C
10 min. at 100°C | UL 94 V-0 | | BERGQUIST
GAP FILLER TGF 1500LVO | Two-part, silicone, low
volatility gap filler 1.8 W/mK | 1.8 W/mK | 20 (High Shear) at
300/s | 400 | 8 hr. at 25°C
10 min. at 100°C | UL 94 V-0 | | BERGQUIST
GAP FILLER TGF 3500LVO | Two-part, silicone, low
volatility gap filler 3.5 W/mK | 3.5 W /mk | 45 (High Shear) at
1500/s | 275 | 24 hr. at 25°C
30 min. at 100°C | UL 94 V-0 | | BERGQUIST
GAP FILLER TGF 4000 | Two-part, silicone gap filler
4.0 W/mK | 4.0 W /mk | 50 (High Shear) at
1500/s | 450 | 24 hr. at 25°C
30 min. at 100°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 4500CVO | Two-part, high
performance, thermally
conductive, liquid gap filling
material | 4.5 | 20,000 | - | 48 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 3000SF | Two-part room temperature curable gap filler suitable for use in high throughput assembly applications | 3.0 | 22,000 | - | 72 hr. at 25°C
3 hr. at 85°C | UL 94 V-0 | ## **ADHESIVES** | Product Name | Description | Thermal Conductivity | Viscosity | Dielectric Strength | Cure Schedule | Flame Rating | |------------------------------------|--|----------------------|---|---------------------|---|--------------| | BERGQUIST
LIQUI-BOND TLB SA1800 | Two-part, liquid silicone
adhesive at 3.5 W/mK | 3.50 W/mK | 45 (part A) /
30 (part B) High shear
at 600/s | 250 V/mil | 20 min. at 125°C | UL 94 V-0 | | BERGQUIST
LIQUI-BOND TLB SA3500 | One-part, liquid silicone
adhesive at
1.8 W/mK | 1.80 W/mK | 125 Pa.s | 250 V/mil | 20 min. at 125°C | UL 94 V-0 | | LOCTITE 315 | One-part, liquid acrylic
adhesive | 0.80 W/mK | 360 – 850 Pa.s
(Brookfield) | 26.7 kV/mm | Various:
Activator 7387™
is required for
proper curing | UL 94 V-0 | | LOCTITE 3875 | Two-part, liquid acrylate
adhesive | 1.75 W/mK | Part A at speed
2.5 rpm, 65 Pa.s
Part A at speed
20 rpm, 32 Pa.s
Part B at speed
2.5 rpm, 190 Pa.s
Part B at speed
20 rpm, 90 Pa.s | - | 24 – 72 hr.
at 25°C | UL 94 V-0 | #### **PHASE CHANGE** | Product Name | Description | Thermal resistance | Volume resistivity | Dielectric
Breakdown
Voltage | Thickness | Phase Change
Temperature | Recommended
Drying | |---------------------------------|--------------------------|---------------------------------|------------------------|------------------------------------|--------------------------|-----------------------------|-----------------------| | BERGQUIST
HI-FLOW THF 1600P | Polyimide film based PCM | 0.13°C in²/W
0.010 at 10 psi | 10 ¹² (Ω•m) | 5,000 Vac | 0.004 - 0.005 | 55°C | - | | BERGQUIST
HI-FLOW THF 3000UT | PCM tabulated pad form | 0.09°C in²/W
0.005 at 10 psi | - | - | 0.005", 0.01",
0.016" | 52°C | - | | Product Name | Description | Phase Change
Temperature
(°C) | Thermal Conductivity | Specific Gravity | Recommended
Drying
Condition | Application
Method | |--------------------|--|-------------------------------------|----------------------|------------------|--|--| | LOCTITE TCP 4000 D | A reworkable, repeatable and dispensable phase change thermal interface material suitable for use between a heat sink and a variety of heat dissipating components | 45 | 3.4 | 2 | 0.051 mm
Thickness:
5 hr. at 22°C | Stencil, needle
dispensed,
screen print or
manually apply | | LOCTITE TCP 7000 | Non-silicone and reworkable phase
change material | 45 | >3.0 | 2 | 0.051 mm
Thickness:
30 hr. at 22°C
22 min. at 60°C
3 min. at 125°C | Stencil or screen print | | LOCTITE TCP 7800NC | Non-silicone and reworkable phase change material designed for use between heat generating devices and the surfaces to which they are mounted or other heat dissipating surfaces | 45 | >3.0 | 2 | 0.051 mm
Thickness:
30 hr. at 22°C
22 min. at 60°C
3 min. at 125°C | Stencil, screen
print or manual
application | ## $\textbf{SIL-PAD}^{\text{\tiny (R)}}$ | Product Name | Description | Thermal Conductivity | Viscosity | Dielectric Strength
(V/mil) | Cure Schedule | Flame Rating | |---------------------------------|-------------------------------|----------------------|-----------|--------------------------------|---------------|--------------| | BERGQUIST SIL-PAD
TSP K1300 | Polyimide reinforced SIL-PAD | 1.3 W/mK | 90 | 6,000 Vac | 0.15 ± 0.025 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP K1100 | Polyimide reinforced SIL-PAD | 1.1 W/mK | 90 | 6,000 Vac | 0.15 ± 0.025 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP K900 | Polyimide reinforced SIL-PAD | 0.9 W/mK | 90 | 6,000 Vac | 0.15 ± 0.025 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP 3500 | Fiberglass reinforced SIL-PAD | 3.5 W/mK | 90 | 4,000 Vac | 0.254 - 0.508 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP 1800ST | Fiberglass reinforced SIL-PAD | 1.8 W/mK | 75 | 3,000 Vac | 0.203 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP 1600S | Fiberglass reinforced SIL-PAD | 1.6 W/mK | 92 | 5,500 Vac | 0.229 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP 1750 | Fiberglass reinforced SIL-PAD | 1.7 W/mK | 85 | 6,000 Vac | 0.250 | UL 94 V-0 | | BERGQUIST SIL-PAD
TSP Q2500 | Aluminum reinforced SIL-PAD | 2.5 W/mK | 93 | Non-insulating | 0.152 | UL 94 V-0 | #### **PIONEERS AT HEART** FOR THE GOOD OF GENERATIONS It all started with a dream. 145 years ago, Fritz Henkel, an entrepreneur, and courageous pioneer at heart revolutionized the everyday life of people. With that, he launched a legacy of care: for his employees, society, and environment. Long before the concept existed, he put sustainability first. Today, the name Henkel still stands for these values. Our sense of unity has made us a diverse community of over 52,000 that customers and consumers put their trust in. Together, we enrich and improve the lives of billions every day through our products, services, and solutions. And we have the potential to impact even more. We will build on our pioneering spirit, knowledge, and resources to shape a purposeful future for the next generations. With our innovation and technology, we create value for customers and consumers, bring success to our teams, and are a force for good in the world. WE ARE PIONEERS AT HEART FOR THE GOOD OF GENERATIONS. LINKEDIN **CONTACT US** GET IN TOUCH WITH US #### **Europe** Mahmoud Awwad @henkel.com #### **Asia Pacific** Samuel Lu samuel.lu@henkel.com #### **North America** Rich Beck rich.beck@henkel.com Across the Board, Around the Globe. henkel-adhesives.com The information provided herein, especially recommendations for the usage and the application of our products, is based upon our knowledge and experience. Due to different materials used as well as to varying working conditions beyond our control we strictly recommend to carry out intensive trials to test the suitability of our products with regard to the required processes and applications. We do not accept any liability with regard to the above information or with regard to any verbal recommendation, except for cases where we are liable of gross negligence or false intention. The information is protected by copyright. In particular, any reproductions, adaptations, translations, storage and processing in other media, including storage or processing by electronic means, enjoy copyright protection. Any exploitation in whole or in part thereof shall require the prior written consent of Henkel AG & Co. KGaA. Except as otherwise noted, all marks used in this document are trademarks and/or registered trademarks of Henkel and/or its affiliates in the US, Germany, and elsewhere. © Henkel AG & Co. KGaA, **01/2022**