MATERIALS FOR POWER SUPPLIES AND CONVERTERS FORMULATED FOR CONTINUOUS PERFORMANCE AND SUSTAINABLE RESULTS # **CONTENTS** | Introduction to Power Supplies | 3 | |--------------------------------|----| | AC/DC Material Solutions | 4 | | DC/DC Material Solutions | 5 | | MATERIALS FOR POWER DEVICES | | | Thermal Materials | 6 | | Protecting Materials | 13 | | Bonding Materials | 17 | #### INTRODUCTION TO POWER SUPPLIES The demands on power supplies in industrial electronics are immense. Expectations for higher power and increased functionality within smaller dimensions – without impacting reliability or raising cost – are driving manufacturers toward more capable materials and processes. As a global partner with proven product performance, Henkel's family of electronic materials helps designers achieve these ambitions. ### **AC/DC Power Conversion** AC/DC power supplies are designed to convert AC distribution power to DC power for use by end applications, distribution systems and alternative energy devices. Improvements in design and capability facilitated by novel electronic materials allow these important electronic systems to be smaller, more portable, increasingly powerful, and highly reliable. Henkel materials play a critical role in producing AC/DC power supplies so that electrical connections are secure, structures are durable and function is dependable. ### **DC/DC Power Conversion** Utilized to enable efficient distribution of power through electronic systems, DC/DC power converters are under constant pressure to handle more watts per cubic centimeter, run more efficiently and maintain high reliability standards. With Henkel materials as a central component to achieving these ambitions, DC/DC converters can be designed and manufactured with increased power densities and higher reliability at reduced cost. # MATERIAL SOLUTIONS FOR AC/DC POWER DEVICE # MATERIAL SOLUTIONS FOR DC/DC POWER DEVICE # THERMAL MATERIALS FOR AC/DC & DC/DC # **A Total Solutions Approach** Henkel's portfolio of products for power conversion technology offers a holistic approach through compatible material sets that simplify the supply chain with a single, low-risk source for thermal, connecting, protecting and bonding solutions. ### **Thermal Management Materials** Managing the thermal load produced by expanded function with smaller dimensions is challenging all electronic sectors, including the power supply market. As power densities increase and reliability expectations rise, Henkel's BERGQUIST® brand of thermal interface materials (TIMs) provide safety agency recognition and low thermal resistance dielectric interfaces between power-generating components and heat sinks. A wide range of TIMs in pad, liquid and phase change formulations are available in a variety of chemistry platforms and thermal conductivities to suit almost any AC/DC or DC/DC power converter requirement. ### THERMAL INTERFACE MATERIALS FOR DC/DC # THERMAL INTERFACE MATERIALS #### SIL PAD® | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Hardness | Dielectric
Breakdown
Voltage | Thickness
(mm) | Flammability
Rating | |---------------------------------|---|--|------------------------------------|------------------|------------------------------------|-------------------|------------------------| | BERGQUIST® SIL PAD®
TSP 1600 | A highly compliant pad that provides high thermal performance and electrical isolation at low mounting pressures | Thermal impedance: 0.45°C-in²/W (at 50 psi) High value material Smooth and highly compliant surface Electrically isolating | 1.6 | 91 (Shore A) | 3,000 | 0.127 | UL 94 V-0 | | BERGQUIST SIL PAD
TSP 1600S | A thermally conductive insulation material that provides high thermal performance and electrical isolation at low mounting pressures | Thermal impedance: 0.61°C-in²/W (at 50 psi) Electrically isolating Low mounting pressures Smooth and highly compliant surface General-purpose thermal interface material solution | 1.6 | 92 (Shore A) | 5,500 | 0.229 | UL 94 V-0 | | BERGQUIST SIL PAD
TSP 1800ST | A fiberglass-reinforced
material that is tacky
on both sides for high
volume assemblies | Thermal impedance: 0.23°C-in²/W (at 50 psi) Naturally tacky on both sides Pad is repositionable Excellent thermal performance Auto-placement and dispensible | 1.8 | 75 (Shore 00) | 3,000 | 0.203 | UL 94 V-0 | | BERGQUIST SIL PAD
TSP K900 | A specially developed
film that withstands
high voltages and
requires no thermal
grease | Thermal impedance: 0.48°C-in²/W (at 50 psi) Withstands high voltages High dielectric strength Very durable | 0.9 | 90 (Shore
00) | 6,000 | 0.152 | UL 94 VTM-0 | | BERGQUIST SIL PAD
TSP K1100 | A medium performance
film coated with
silicone elastomer
to provide a strong
dielectric barrier | Thermal impedance: 0.49°C-in²/W (at 50 psi) Physically strong dielectric barrier against cut-through Medium performance film | 1.1 | 90 (Shore
00) | 6,000 | 0.152 | UL 94 VTM-0 | | BERGQUIST SIL PAD
TSP K1300 | A high performance
insulator to replace
ceramic insulators such
as Beryllium Oxide,
Boron Nitride, and
Alumina | Thermal impedance: 0.41°C-in²/W (at 50 psi) Tough dielectric barrier against cut-through High performance film Designed to replace ceramic insulators | 1.3 | 90 (Shore
00) | 6,000 | 0.152 | UL 94 VTM-0 | | BERGQUIST SIL PAD
TSP Q2000 | A fiberglass-reinforced grease replacement that withstands processing stresses without losing physical integrity and provides ease of handling during application | Thermal impedance: 0.35°C-in²/W (at 50 psi) Eliminates processing constraints typically associated with grease Conforms to surface textures Easy handling May be installed prior to soldering and cleaning without worry | 2.0 | 86 (Shore A) | Non-
Insulating | 0.127 | UL 94 V-0 | | BERGQUIST SIL PAD
TSP Q2500 | Aluminum foil coated
on both sides with
thermally/electrically
conductive rubber for
applications needing
maximum heat transfer
but not requiring
electrical isolation | Thermal impedance: 0.22°C-in²/W (at 50 psi) Maximum heat transfer Aluminum foil coated both sides Designed to replace thermal grease | 2.5 | 93 (Shore A) | Non-
Insulating | 0.152 | UL 94 V-0 | #### **GAP PAD®** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·K) | Modulus at
25°C
(kPa) | Dielectric
Breakdown
Voltage | Thickness
(mm) | Flammability
Rating | |--------------------------------------|--|--|------------------------------------|-----------------------------|------------------------------------|-------------------|------------------------| | BERGQUIST
GAP PAD® TGP 1350 | Highly compliant gap
pad material | Permanent liner reinforcement allows easy rework and resistance to puncture and tear resistance Highly conformable/low hardness Designed for and low-stress applications | 1.3 | 110 | 6,000 V at
500 μm | 0.508 - 3.175 | UL 94 V-0 | | BERGQUIST
GAP PAD
TGP 1000VOUS | Thermally conductive gap filling material | Highly conformable, low hardness "Gel-like" modulus Decreased strain Puncture, shear and tear resistant Electrically isolating | 1.0 | 55 | 6,000 V at
500 μm | 0.508 - 6.350 | UL 94 V-0 | | BERGQUIST
GAP PAD
TGP HC3000 | Thermally conductive gap filling material | High-compliance, low compression stress Fiberglass reinforced for shear and tear resistance Low modulus | 3.0 | 110 | 5,000 V at
500 μm | 0.508 – 3.175 | UL 94 V-0 | | BERGQUIST
GAP PAD
TGP HC5000 | Thermally conductive gap filling material | Highly conformable Exceptional thermal performance High-compliance, low compression stress Fiberglass reinforced for shear and tear resistance Low modulus | 5.0 | 121 | 5,000 V at
500 μm | 0.508 – 3.175 | UL 94 V-0 | | BERGQUIST
GAP PAD
TGP 6000ULM | A high performance
thermally conductive
gap filling material
with ultra low modulus | Thermally conductive: 6.0 W/m·K High-compliance, low compression stress Ultra low modulus | 6.0 | 41 | 5,000 V at
500 μm | 1.524 – 3.175 | UL 94 V-0 | | BERGQUIST
GAP PAD
TGP 7000ULM | A high performance
thermally conductive
gap filling material
with ultra low modulus | Thermally conductive: 7.0 W/m·K Highly conformable, extremely low compression stress Conforms and maintains structured integrity with minimum stress applied | 7.0 | 28 | 5,000 V at
500 μm | 1.016 - 3.175 | UL 94 V-0 | #### **GAP FILLER** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Viscosity
at 25°C
(cP) | Dielectric
Strength
(V/25 µm) | Recommended
Cure | Flammability
Rating | |--|---|--|------------------------------------|------------------------------|-------------------------------------|---------------------|------------------------| | BERGQUIST
GAP FILLER
TGF 1500 | Two-part, high
performance, thermally
conductive liquid gap
filling material | Optimized shear thinning characteristics for ease of dispensing Excellent slump resistance (stays in place) Ultra-conforming with excellent wet-out for low stress interface applications 100% solids – no cure by-products Excellent low and high temperature mechanical and chemical stability | 1.8 | 250,000 | 400 | 5 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 1500LVO | A two-part, high
performance, thermally
conductive liquid gap
filling material with
significantly lower
levels of silicone
outgassing | Thermal conductivity: 1.8 W/m·K Low volatility for silicone sensitive applications Ultra-conforming, with excellent wet-out 100% solids — no cure by-products Excellent low and high temperature mechanical and chemical stability | 1.8 | 20,000 | 400 | 8 hr. at 25°C | UL 94 V-0 | ## THERMAL INTERFACE MATERIALS #### **GAP FILLER - CONTINUED** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Viscosity | Dielectric
Strength
(V/25 µm) | Recommended
Cure | Flammability
Rating | |--|--|--|------------------------------------|----------------------------|-------------------------------------|---------------------------------|------------------------| | BERGQUIST®
GAP FILLER
TGF 3600 | Thermally
conductive
liquid gap filling
material | High thermal performance Thixotropic nature makes it easy to dispense Ultra-conforming material designed for fragile and low-stress applications Ambient or accelerated cure schedules | 3.6 | 150,000
at 25°C
(cP) | 275 | 15 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 3500LVO | Thermally
conductive, low
outgassing liquid
gap filling material | Low volatility for outgassing sensitive applications Ultra-conforming with excellent wet-out for low stress interfaces on applications 100% solids - no cure by-products Ambient or accelerated cure schedules | 3.5 | 45,000
at 25°C
(cP) | 275 | 24 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 4000 | Two-part, high
performance,
thermally
conductive, liquid
gap filling material | Thermal Conductivity: 4.0 W/m·K Extended working time for manufacturing flexibility Ultra-conforming with excellent wet-out 100% solids - no cure by-products Excellent low and high temperature chemical and mechanical stability | 4.0 | 50,000 at
25°C
(CP) | 450 | 24 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 4500CVO | Two-part, high
performance,
thermally
conductive, liquid
gap filling material | Thermal conductivity: 4.5 W/mK Extended working time for manufacturing flexibility Controlled Volatile Silicones High dispense throughput Optimized viscosity for automated dispensing processes | 4.5 | 20,000 | - | 48 hr. at 25°C | UL 94 V-0 | | BERGQUIST
GAP FILLER
TGF 3000SF | Two-part room
temperature
curable gap filler
suitable for use in
high throughput
assembly
applications | Thermal Conductivity: 3.0 W/m-K Dispensable liquid, 2K Silicone free Gap Filler Room temperature cure - no oven required Extremely high dispense rate: Equipment dependent Low compression stress during assembly | 3.0 | 22,000 | - | 72 hr. at 25°C
3 hr. at 85°C | UL 94 V-0 | # LIQUI-FORM | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Volume
Resistivity
(Ω-m) | Dielectric
Strength
(V/25 µm) | Dispense
Rate
(grams/min.) | Flammability
Rate | |------------------------------------|--|--|------------------------------------|--------------------------------|-------------------------------------|----------------------------------|----------------------| | BERGQUIST LIQUI-FORM
TLF LF3500 | A one-part, highly
conformable
thermally
conductive gel
with thixotropic
properties | Thermal Conductivity: 3.5 W/m·K Dispensable pre-cured gel Stable viscosity in storage and in the application Excellent chemical stability and mechanical stability | 3.5 | 1 x 10 ¹¹ | 250 | 40 | UL94 V-0 | # THERMAL INTERFACE MATERIALS – CONTINUED # LIQUI-BOND | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Viscosity at
25°C (cP) | Dielectric
Strength
(V/25 µm) | Thickness
(mm) | Flammability
Rating | |--------------------------------------|---|--|------------------------------------|---------------------------|-------------------------------------|---|------------------------| | BERGQUIST LIQUI-BOND
TLB EA1800 | A two-
component,
epoxy based,
thixotropic liquid-
dispensable
adhesive | Room temperature cure Room temperature storage Thermal Conductivity: 1.8 W/m·K Eliminates need for mechanical fasteners Maintains structural bond in severe-environment applications Excellent chemical and mechanical stability | 1.8 | 61,000 | 250 | 10 hr. at 25°C
or
10 min. at
125°C | UL 94 V-0 | | BERGQUIST LIQUI-BOND
TLB SA2000 | A high performance, thermally conductive, one-part liquid silicone adhesive that cures to a solid bonding elastomer | High thermal conductivity: 2.0 W/m·K Eliminates need for mechanical fasteners One-part formulation for easy dispensing Mechanical and chemical stability Maintains structural bond in severe environment applications Heat cure | 2.0 | 200,000 | 250 | 20 min. at
125°C | UL 94 V-0 | | BERGQUIST LIQUI-BOND
TLB SA2005RT | A two-part, high performance silicone thermal adhesive that offers an adaptable cure at multiple temperatures from 25°C up to 180°C | Thermally conductivity: 2.0 W/m·K Adaptive thermal cure No cure by-products Cures and bonds at room temperature Cure rate is greatly accelerated at elevated temperatures Room temperature storage | 2.0 | 70,000 | 275 | 7 days at
25°C or
1 hr. at 85°C | UL 94 V-0 | #### **PHASE CHANGE** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Volume
Resistivity
(Ω-m) | Dielectric
Breakdown
Voltage | Thickness
(mm) | Flammability
Rating | |--------------------------------|---|--|------------------------------------|--------------------------------|------------------------------------|-------------------|------------------------| | BERGQUIST HI-FLOW
THF 1600G | Consists of a thermally conductive 55°C phase change compound coated on a fiberglass web. Is designed as a thermal interface material between a computer processor and a heat sink. | Thermal impedance: 0.20°C-in² /W (at 25 psi) Will not drip or run like grease Phase change compound coated on a fiberglass carrier | 1.6 | 1 x 10 ⁸ | 300 | 0.127 | UL 94V-0 | | BERGQUIST HI-FLOW
THF 1500P | A thermally conductive phase change material, reinforced with a polyimide film that provides high dielectric strength and cut through resistance | Thermal Impedance: 0.20°C-in²/W (at 25 psi) 150°C high temperature reliability Natural tack one side for ease of assembly Exceptional thermal performance in an insulated pad | 1.5 | 1 x 10 ¹² | 5,000 | 0.114 - 0.140 | UL 94V-0 | #### PHASE CHANGE (CONTINUED) | Product Nam | 9 | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Volume
Resistivity
(Ω-m) | Dielectric
Breakdown
Voltage | Thickness
(mm) | Flammability
Rating | |-----------------------------|------|--|--|------------------------------------|--------------------------------|------------------------------------|-------------------|------------------------| | BERGQUIST® HI-
THF 1600P | FLOW | A thermally conductive 55°C
phase change compound
coated on a thermally
conductive polyimide film | Thermal impedance: 0.13°C-in²/W (at 25 psi) Field-proven polyimide film with excellent dielectric performance and cut-through resistance Outstanding thermal performance in an insulated pad | 1.6 | 1 x 10 ¹² | 5,000 | 0.102 - 0.127 | UL 94V-0 | | Product Name | Description | Phase Change Temperature | Thermal Conductivity
(W/m·k) | Specific Gravity | Recommended Drying
Condition | |-------------------------|--|--------------------------|---------------------------------|------------------|--| | LOCTITE®
TCP 4000 PM | A reworkable and repeatable phase change material suitable for use between heat generating devices and the surfaces to which they are mounted or other heat dissipating surfaces | 45°C | 3.4 | 2 | .051 mm thickness:
30 hr. at 22°C
22 min. at 60°C
3 min. at 125°C | #### **BOND-PLY** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Dielectric
Breakdown
Voltage | Thickness
(mm) | Recommended
Cure | Flammability
Rating | |--|--|--|------------------------------------|------------------------------------|-------------------|---------------------|------------------------| | BERGQUIST
BOND-PLY
TBP 1400 LMS-HD | A thermally
conductive,
heat curable
laminate
material | TO-220 Thermal performance: 2.3°C/W, initial pressure only lamination Exceptional dielectric strength Very low interfacial resistance 200 psi adhesion strength Continuous use of -60 – 180°C Eliminates mechanical fasteners | 1.4 | 5,000 | 0.254 - 0.457 | 30 min. at 125°C | UL 94V-0 | #### **ISOEDGE** | Product Name | Description | Key Attributes | Thermal
Conductivity
(W/m·k) | Dielectric
Strength
(v25µm) | Permittivity
(Dielectric
Constant) | Thickness
(mm) | Flammability
Rating | |--------------------------------|---|---|------------------------------------|-----------------------------------|--|-------------------|------------------------| | BERGQUIST ISOEDGE TPC
Black | A thin thermally conductive and electrically isolating dielectric coating that provides excellent heat transfer with electrical isolation on heat sinks | U.L. RTI rating of 130°C Low thermal impedance 2.2°C/W (TO-220 Test Method) U.L. recognized thermal solution that allows heat sink placement in very close proximity to components Significantly improves overall thermal performance when compared to traditional flat heat sinks and pads | 0.6 | 650 | 6 | 0.102 - 0.254 | UL 94 V-0 | # PROTECTING MATERIALS FOR AC/DC & DC/DC #### **PCB AND COMPONENT PROTECTION** Electrical interconnection is bolstered through protection of the PCB and its components, with LOCTITE® and TECHNOMELT® brand circuit board protection materials delivering critical safeguarding against harsh industrial environments and delivering long-term defense against electrically harmful conditions. Conformal coatings keep electronic circuits shielded from moisture, chemicals and other contaminants; chip-on-board encapsulants provide a protective barrier for delicate components; underfills minimize stress on array devices; TECHNOMELT low pressure molding materials provide a fast, non-damaging solution for electronic encapsulation; and potting materials in silicone, epoxy and polyurethane chemistries offer processing flexibility and maximum protection. With environmental consciousness as a priority, Henkel's materials development efforts focus on formulation of halogen-free, lead-free, solvent-free and low-VOC products. # **POTTING** | Product Name | Alternate Cure | Viscosity
CP at 25°C | Pot Life at 25°C | Hardness | Thermal Conductivity
W/m·k | Temperature Range | Shelf Life | | | | |--------------------------------------|---|-------------------------|---------------------------------|----------|-------------------------------|-------------------|------------|--|--|--| | Polyurethane | | | | | | | | | | | | LOCTITE® STYCAST
US 2350 | 2 hr. at 60°C | 2,400 | 45 min. | 85A | 0.510 | -65°C – 125°C | 1 year | | | | | LOCTITE STYCAST
US 2651 | 16 hr. at 25°C | 1,000 | 10 min. | 15A | 0.180 | -65°C – 125°C | 1 year | | | | | Ероху | | | | | | | | | | | | LOCTITE STYCAST
ES 4512 | 36 – 48 at 25°C
(Recommended
Cure)
3 hr. at 60°C
(Alternate cure) | 19,000 | 200 g mass
60 min. | 88D | 0.644 | -40°C − 125°C | 1 year | | | | | LOCTITE STYCAST
2850FT / CAT 11 | 8 – 16 hr. at 80°C
2 – 4 hr. at 100°C
30 – 60 min. at
120°C | 64,000 | 100 g mass at 25°C
for 1 hr. | 96D | 1.280 | -55°C – 125°C | 1 year | | | | | LOCTITE STYCAST
2850FT / CAT 23lv | 16 – 24 hr. at 25°C
4 – 6 hr. at 25°C
2 – 4 hr. at 65°C | 5,600 | 100 g mass at 25°C
for 1 hr. | 92D | 1.100 | 65°C – 105°C | 1 year | | | | | LOCTITE STYCAST
ES 2505 / CAT 11 | 4 hr. at 100°C
(w/CAT 11) | 5,000 | > 4 hr. | 72D | 0.820 | -55°C – 155°C | 1 year | | | | | LOCTITE STYCAST
EE 4215 / HD 0243 | 2 hr. at 80°C
+ 2hr. at 150°C | 20,000 to
30,000 | 7 – 8 hr. | 80 - 85D | 0.480 | -40°C – 180°C | 6 months | | | | | Product Name | Description | Color | Cure Schedule | Application | Storage Temperature | Shelf Life | |----------------------------------|---|-------|---|---------------------------|---------------------|------------------| | Silicone | | | | | | | | LOCTITE STYCAST
5954 | Two-part, highly filled, addition-cure,
thermally conductive silicone. High
thermal conductivity. Noncorrosive. | Red | 4 hr. at 65°C | Encapsulant | 25°C | 6 months at 25°C | | LOCTITE STYCAST
4350/CAT 50-2 | RTV condensation cure, silicone rubber potting compound is designed for potting and encapsulation | Red | 16 – 24 hr.
at 25 °C
2 – 4 hr.
at 65°C | Potting or
Encapsulant | 25°C | 152 days at 25°C | ## **CONFORMAL COATINGS** | Product Name | Description | Key Attributes | Viscosity at
25°C | Operating
Temperature
(°C) | Volume
Resistivity
(Ω·cm) | Color | Recommended Cure | |------------------------------|--|--|----------------------|----------------------------------|---------------------------------|-----------------------------------|--| | LOCTITE STYCAST
PC 40-UMF | Urethane
conformal coating | One component VOC-free Conforms to IPC-CC-830 requirements | 250 | -40 – 135 | 3.50 x 10 ¹⁶ | Clear | 10 sec. at 300 – 600
mW/cm² + 2 – 3 days at
atmospheric moisture | | LOCTITE STYCAST
UV 7993 | Urethane
conformal coating | One component Solvent-free Good moisture resistance Excellent chemical resistance | 120 | -40 – 130 | 2.20 x 10 ¹⁶ | Translucent
Yellow | 5 sec. at 400 – 700 mW/
cm² + 100 hr. at 50%
relative humidity | | LOCTITE STYCAST
PC 62 | Rapid drying
acrylic
for circuit board
protection
applications | Fluorescent under UV light Provides environmental and mechanical protection Toluene-free alternative Superior toughness and abrasion resistance Easily removable with soldering iron or suitable solvent | 50 | -40 – 125 | 1.04 x 10 ¹⁶ | Colorless | 24 hr. at 25°C | | LOCTITE SI 5293 | Silicone conformal coating | One component Exhibits positive fluorescence under UV light Repairable Solvent-free Designed for severe temperature environments and high-reliability automotive applications | 400 - 800 | -40 - 200 | 1.00 x 10 ¹⁴ | Transparent
amber to
yellow | 20 – 40 sec. per side at
70 mW/cm² + 72 hr. at
50% relative humidity | ## **LOW PRESSURE MOLDING** | Product Name | Description | Key Attributes | Color | Operating
Temperature (°C) | Shore Hardness | |--------------------|--------------------|--|-------|-------------------------------|----------------| | TECHNOMELT® PA 646 | Moldable polyamide | Ideal for applications where strength and hardness are needed Good adhesion for high-temperature applications | Black | -40 – 125°C | 92A | | TECHNOMELT PA 6481 | Moldable polyamide | Used for molding applications This material is formulated with improved UV stability Especially suitable for outdoor applications. | Black | -40 – 130°C | 93A | | TECHNOMELT PA 2692 | Moldable polyamide | Suitable for high-humidity applications Formulated for very low water vapor transmission | Amber | -40 – 150°C | 88A | # **UNDERFILLS** #### **CORNERBOND** Underfills | | Product Name | Description Key Attributes | | Viscosity at
25°C (cP) | Glass Transition
Temperature, T _g
(°C) | Coefficient
of Thermal Expansion,
CTE
(ppm/°C) | | Pot Life | Recommended
Cure | |--|----------------|--|---|---------------------------|---|---|-----|---------------------|---| | | | | | (c) | Below Tg | Above T _g | | | | | | LOCTITE 3508NH | Reworkable cornerfill
designed to cure
during pb-free
reflow while allowing
self-alignment of IC
components | One component Reflow curable Eliminates post-reflow dispense and cure steps Reworkable Halogen-free | 70,000 | 118 | 65 | 175 | 30 days at
25 °C | Cure during
Pb-free solder
reflow profile at
245°C | # **BONDING MATERIALS FOR AC/DC & DC/DC** #### STREAMLINED STRUCTURAL INTEGRITY LOCTITE® adhesives allow the reduction of processing costs and device footprints by providing reliable, strong bonding that eliminates manufacturing steps and does away with mechanical hardware such as screws or clips. A diverse portfolio of adhesive and sealant solutions offers adaptable and customizable bonding technologies for demanding power conversion applications. From *CHIPBONDER* and *ECCOBOND* adhesives for mixed- and double-sided SMT applications to BERGQUIST® BOND-PLY materials for structural adhesion of components and PCBs to heat sinks, Henkel's range of bonding solutions ensures all parts are securely connected for long-lasting product integrity and processes are optimized for maximum efficiency. #### **ASSEMBLY ADHESIVES** | Product Name | Description | Chemistry | Color | Cure Speed | Application | Storage Temp | |-----------------------|---|-----------|--|--|--|--| | Acrylate | | | | | | | | LOCTITE® 3875 | Bead-on-bead, thermally conductive adhesive is designed to thermally couple and structurally bond heats sinks to heat dissipating electronic components | Acrylate | Part A - Pale
Yellow
Part B - Pale
Blue | 24 – 72 hr. at 23°C ,
50% RH | Thermal
management | Optimal Storage (PART A): -20 °C Alternative Storage (PART A): 2 - 8 °C Optimal Storage (PART B): 2 - 8 °C | | Ероху | | | | | | | | LOCTITE 3609 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Dark, red
viscous gel | 90 – 120 sec. at
150°C | Surface mount
adhesive | 2 – 8°C | | LOCTITE 3611 | Designed for bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous gel | 90 – 120 sec. at
150°C | Surface mount
adhesive | 2 – 8°C | | LOCTITE 3614 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous gel | 90 – 120 sec. at
150°C | Surface mount
adhesive | 2 – 8°C | | LOCTITE 3616 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous
pastel | 90 – 120 sec. at
150°C | Surface
mount adhesive | 2 – 8°C | | LOCTITE 3621 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous gel | 90 – 120 sec. at
150°C | Surface mount adhesive | 2 – 8°C | | LOCTITE 3626M | Designed for bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red gel-like
material | minimum 120 sec.
at 130°C or 90 sec.
at 150°C at the
bondline | Surface mount adhesive | 2 – 8°C | | LOCTITE CB
3626MHF | Designed for bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red gel-like
material | 30 min. at 150°C | Component
assembly, NCA,
surface mount
adhesive | 2 – 8°C | # **ASSEMBLY ADHESIVE (CONTINUED)** | Product Name | Description | Chemistry | Color | Cure Speed | Application | Storage Temp | |---------------------------|--|-------------------|--------------------------|---------------------------------------|---------------------------|--------------| | LOCTITE 3614 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous gel | 90 – 120 sec. at
150°C | Surface mount
adhesive | 2 – 8°C | | LOCTITE 3627 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red gel-like
material | 90 – 120 sec. at
150°C | Surface mount
adhesive | 2 – 8°C | | LOCTITE 3616 | Designed for the bonding of surface mounted devices to printed circuit boards prior to wave soldering | Ероху | Red viscous
pastel | 90 – 120 sec. at
150°C | Surface
mount adhesive | 2 – 8°C | | LOCTITE ABLESTIK
84-3J | Adhesive is designed for die attach applications as well as component attach | Ероху | Blue | 1 hr. at 150°C
2 hr. at 125°C | Die Attach | -40 °C | | Silicone | | | | | | | | LOCTITE SI 5699 | Designed primarily for flange sealing
with excellent oil resistance on rigid flange
sealing for example on transmissions and cast
metal housings. | Oxime
silicone | Grey Paste | Cured for 1 week at 25 °C / 50±5 % RH | Sealing | 8 – 21°C | | LOCTITE SI 5404 | Designed to bond metallic heat sinks,
ceramic chips and circuit board substrates | Silicone | White to gray
pastel | 1 hr. at 150 °C | Bonding | 2 – 8°C | # **THERMALLY CONDUCTIVE ADHESIVES** | Product Name | Description | CURE TYPE | Thermal
Conductivity
(W/m·k) | Volume
Resistivity
(Ω-m) | Cure Schedule | Shelf Life | |---------------------------------------|--|------------------|------------------------------------|--------------------------------|---------------------------------------|-------------------------| | Acrylic | | | | | | | | LOCTITE 315 | A self-shimming, thermally-conductive,
one-part adhesive for bonding electrical
components to heat sinks with an insulating
gap | Activator (7387) | 0.81 | 1.3 x 10 ¹² | 24 – 72 hr. at
20°C | 9 months at 5°C | | LOCTITE 384 | Repairable, room-temperature, curing adhesive utilized for parts subject to disassembly | Activator (7387) | 0.76 | 1.3 x 10 ¹² | 24 – 72 hr. at
20°C | 9 months at 5°C | | BERGQUIST® LIQUI-BOND
TLB SA2005RT | A two-part, high performance silicone thermal adhesive | Two-Part | 2.00 | 1.0 x 10 ¹³ | 7 days at 25°C
or
1 hr. at 85°C | 6 months
at 5 – 25°C | ## **THREAD LOCKING ADHESIVES** | Product Name | Description | Chemistry | Color | Cure Speed | Viscosity cP at
25°C | |--------------|---|-----------|-------|------------|-------------------------| | LOCTITE 243 | General purpose threadlocker of medium bond strength. This threadlocker secures and seal bolts, nuts and studs to prevent loosening due to vibration. | Acrylic | Blue | 24 hr. | 1,300 – 3,000 | ## **PIONEERS AT HEART** FOR THE GOOD OF GENERATIONS It all started with a dream. 145 years ago, Fritz Henkel, an entrepreneur, and courageous pioneer at heart revolutionized the everyday life of people. With that, he launched a legacy of care: for his employees, society, and environment. Long before the concept existed, he put sustainability first. Today, the name Henkel still stands for these values. Our sense of unity has made us a diverse community of over 52,000 that customers and consumers put their trust in. Together, we enrich and improve the lives of billions every day through our products, services, and solutions. And we have the potential to impact even more. We will build on our pioneering spirit, knowledge, and resources to shape a purposeful future for the next generations. With our innovation and technology, we create value for customers and consumers, bring success to our teams, and are a force for good in the world. WE ARE PIONEERS AT HEART FOR THE GOOD OF GENERATIONS. LINKEDIN CONTACT US GET IN TOUCH WITH US ### **Europe** Mahmoud Awwad @henkel.com #### **Asia Pacific** Samuel Lu samuel.lu@henkel.com #### **North America** Rich Beck rich.beck@henkel.com Across the Board, Around the Globe. henkel-adhesives.com The information provided herein, especially recommendations for the usage and the application of our products, is based upon our knowledge and experience. Due to different materials used as well as to varying working conditions beyond our control we strictly recommend to carry out intensive trials to test the suitability of our products with regard to the required processes and applications. We do not accept any liability with regard to the above information or with regard to any verbal recommendation, except for cases where we are liable of gross negligence or false intention. The information is protected by copyright. In particular, any reproductions, adaptations, translations, storage and processing in other media, including storage or processing by electronic means, enjoy copyright protection. Any exploitation in whole or in part thereof shall require the prior written consent of Henkel AG & Co. KGaA. Except as otherwise noted, all marks used in this document are trademarks and/or registered trademarks of Henkel and/or its affiliates in the US, Germany, and elsewhere. © Henkel AG & Co. KGaA, **01/2022**