BONDERITE.

CONDUCTIVE COATINGS: ENABLING DRY BATTERY CELL MANUFACTURING

AUTHORS: DR. TOBIAS KNECHT, DR. JACOB TURNER, KIRK KRAMER

WELCOME!

Dr. Jacob Turner Senior Chemist, Henkel

HOW DO CONDUCTIVE ELECTRODE COATINGS OPTIMIZE THE PERFORMANCE OF DRY COATED BATTERIES?

HENKEL ADHESIVE TECHNOLOGIES

DR. JACOB TURNER, SR. CHEMIST THE BATTERY SHOW | OCT. 8, 2024

HENKEL E-MOBILITY SOLUTIONS **KEY TECHNOLOGIES FOR BATTERY SYSTEMS**

APPLICABLE TO VARIOUS BATTERY TYPES

3 THE BATTERY SHOW 2024: NORTH AMERICA

AUTOMOTIVE COMPONENTS BUSINESS GLOBAL FOOTPRINT

* Active patent families

ELECTRODE MANUFACTURING WET VS. DRY COATING

ELECTRODE MANUFACTURING | WET & DRY PROCESS

Wet process

Dry process

Solvents, active materials and additives are mixed.

mixture onto the

current collector foils.

Electrode drving

at elevated

temperatures.

Drying

High pressure applied onto the electrode film to reduce the porosity.

Calendaring

Slitting

Electrode slitting to match with the desired battery form factor.

-20% reduction in production footprint

No use of NMP **No** drying and solvent recovery

CAPEX

-35% reduction in manufacturing invest

Mixing of battery active materials

Film Formation

Mixing of battery active

Lamination of dry film and current collector foil - copper (anode) or aluminum (cathode).

Calendaring

Slitting

Electrode slitting to match with the desired battery form factor

Energy and CO₂ -30% reduction in energy demand

Thick electrodes and ASSB

possible

DRY ELECTRODE MANUFACTURING | CHALLENGES

No adhesion between dry film and current collector foil F Resistance rise, capacity fading, processing issues, ...

- Dry film typically consists of active materials, carbon additives and fibrillized PTFE.
- In contrast to wet processing, binder cannot interact with aluminum or copper foil surface.

Current collector foil surface modification required!

CONDUCTIVE ELECTRODE COATING FOR THE BEST INTERFACIAL MATERIAL CONTACT

HENKEL'S CONDUCTIVE COATING LEGACY Trusted partner in tailored carbon coatings for >100 years

CONDUCTIVE COATINGS | GENERAL UNDERSTANDING

Conductive coatings: Dispersions of carbons and resin on metal foils

Surface view

ADHESION PROMOTION | WET ELECTRODE PROCESSING

DRY BATTERY PROCESSING | HENKEL'S "ACTIVE" COATING CONCEPT

Henkel's "active" conductive coating systems

TECHNICAL INSIGHTS ADHESION CHARACTERISTICS

Dry electrode sheet production and validation with Henkel BCCs

Stamp pull-off test

Technical Information

Electrode chemistry

Dry Electrode: CAM: 95wt% NMC 622 Carbon: 4wt% Super C65 Binder: 1wt% PTFE Loading: 30 mg/cm²

Carbon coatings:

Active coating: Bonderite B-CC 1020 Passive coating: Reference material

÷

Process conditions calendar

<u>Temperature variation:</u> Pressure: 40 kN Temperature: RT, 50, 80, 110, 130 °C

Pressure variation: Temperature: 110 °C Pressure: 40, 80, 120 kN

TECHNICAL INSIGHTS & HENKEL'S BENEFIT ADHESION CHARACTERISTICS OF DRY COATED ELECTRODE

- Henkel active coating systems show cohesive failures for all temperature and pressure conditions
- Passive coating systems lead to adhesive defects at low temperatures
- Positive effects: Milder processing conditions, reduced energy demand, improved cycle life & cell performance

PERFORMANCE & SUMMARY RESISTANCE & INTERFACE CHARACTERISTICS

Key learnings

Henkel conductive coatings enable reliable adhesion for wet and dry coated battery cells.

Conductive coatings can reduce the cell resistance and increase battery performance and lifetime.

Dry battery electrode manufacturing can reduce CAPEX and OPEX in cell manufacturing.

The omission of NMP in dry battery production reduces toxic solvent and energy demand.

CORE HENKEL PRODUCT PORTFOLIO ENERGY STORAGE MARKET

		DBE Processing BONDERITE B-CC 1020	Wet Processing BONDERITE B-CC 2200	OTHER BONDERITE S-FN EB-012
Formulation	Solvent	Water	Water	Water
	Electrode	Cathode & Anode	Cathode	Cathode & Anode
	Active materials	Any	LFP	Any
	Cell design	Any	Any	Any
Application	Application technology	(Micro-)Gravure	(Micro-)Gravure	(Micro-)Gravure & Spray
	Electrode application	Anode (Cu) / Cathode (Al)	Cathode (Al)	Anode (Cu) / Cathode (Al)
	Active materials	Any	LFP (some NMC)	Any
	Coating thickness (dry)	1 – 2 μm	1 µm	5 – 10 μm
	Adhesion (Al)	5B (100%)	5B (100%)	5B (100%)
Cell Performance	Contact resistance (Ω)	0.10 – 0.15	0.03 – 0.05	0.15 – 0.20
	Sheet resistance (Ω /sq/mil)	20 – 30 Ω/sq @1 mil	10 – 20 Ω/sq @1 mil	20 – 30 Ω/sq @1 mil
	Electrolyte resistance (double rubs)	> 20	> 100	> 30
	NMP resistance (double rubs)	n/a	>100	> 10
	Electrochemical stability (CV)	0 – 4.4 V vs. Li/Li+	4.4 V vs. Li/Li+	0 – 4.4 V vs. Li/Li+

CORE HENKEL PRODUCT PORTFOLIO ENERGY STORAGE MARKET

		DBE Processing BONDERITE B-CC 1020	Wet Processing BONDERITE B-CC 2200	OTHER BONDERITE S-FN EB-012
Formulation	Solvent	Water	Water	Water
	Electrode	Cathode & Anode	Cathode	Cathode & Anode
	Active materials	Any	LFP	Any
	Cell design	Any	Any	Any
Application	Application technology	(Micro-)Gravure	(Micro-)Gravure	(Micro-)Gravure & Spray
	Electrode application	Anode (Cu) / Cathode (Al)	Cathode (Al)	Anode (Cu) / Cathode (Al)
	Active materials	Any	LFP (some NMC)	Any
	Coating thickness (dry)	1 – 2 µm	1 µm	5 – 10 µm
	Adhesion (Al)	5B (100%)	5B (100%)	5B (100%)
Cell Performance	Contact resistance (Ω)	0.10 - 0.15	0.03 – 0.05	0.15 – 0.20
	Sheet resistance (Ω /sq/mil)	20 – 30 Ω/sq @1 mil	10 – 20 Ω/sq @1 mil	20 – 30 Ω/sq @1 mil
	Electrolyte resistance (double rubs)	> 20	> 100	> 30
	NMP resistance (double rubs)	n/a	>100	> 10
	Electrochemical stability (CV)	0 – 4.4 V vs. Li/Li+	4.4 V vs. Li/Li+	0 – 4.4 V vs. Li/Li+

Henkel Adhesive Technologies

WE MAKE FUTURE MOBILITY HAPPEN

THANK YOU

Download the Whitepaper!

