Webinar

Component Level EMI Shielding for Semiconductor Packages

November 7, 2017 Henkel Electronic Materials

Introduction

Speakers

- Jinu Choi | Market Segment Head
- Xinpei Cao | Sr. Principal Engineer
- Dan Maslyk | Sr. Application Engineer

For more information, please visit:

www.henkel-adhesives.com/loctite-emi-shielding

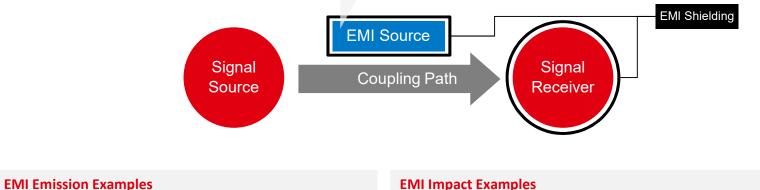
- Henkel solutions and value propositions
- Explainer videos
- Technical and marketing documentation for download

Henl

Agenda

1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

Agenda


1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

Henkel

Electromagnetic Interference and Compatibility

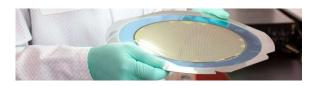
Electromagnetic Interference (EMI)

- Operational disruption of electronic devices when in the vicinity of an electromagnetic field caused by another device.
- Unwanted signal (noise) emitted by electrical circuits carrying rapidly changing signals.

- Performance degradation of receiver signal processing circuits
 - Unintended operation or malfunctions of electromechanical equipment, circuits, components
 - Voltage breakdown or burnout of components and antennas

Transmission interferences

• High-speed clocking signals


• Digital noise from processors

Buses, interconnects and networking interfaces

Digital power supplies (higher switching frequencies)

n inipact Examples

Key Drivers for EMI Shielding Technology Advancements

Higher density semiconductor packaging structures

Sensitivity of next generation electronic systems to EMI is increasing due to growing popularity of complex stacked-chip and multi-chip packages.

Increasing electromagnetic pollution

Growing use of wireless communications is requiring digital equipment to be protected from unwanted radio-frequency interference.

Era of Internet of Things (IoT)


Lower tolerance to equipment failures and unreliability (mobile devices, wearables, transportation electronics, industrial controls and more)

Compliance with tightening EMC regulations

EMI is regulated at national and international levels to allow sensitive equipment to function without performance degradation.

Electromagnetic Spectrum is a Limited Natural Resource

- The EM spectrum is a limited natural resource that must be maintained to allow reliable radio frequency communications.
- EMC regulatory bodies regulate and enforce EMC compliance with national or international standards such as International Electrotechnical Commission (IEC), Federal Communications Commission (FCC), Verband Deutscher Electrotechniker (VDE), International Special Committee on Radio Interference (CISPR), Comité Européen de Normalisation (CEN) and more.

Devices Requiring EMI Shielding

Where is it required?

- Tightly packed highly sensitive components
- Constant move toward miniaturization
- Growing wireless technology applications

EMI shielding is applicable to various components.

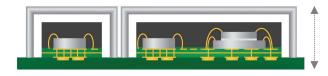
- System-in-Package (SiP)
- System-on-Chip (SoC)
- Microcontrollers (MCU)
- Application processors
- Power amplifiers
- Wireless modules (Wi-Fi, Bluetooth)
- Radio Frequency (RF) modules
- Memory
- Sensors
- Digital Signal Processors (DSP)
- Application-specific integrated circuits (ASIC)
- Field-programmable gate arrays (FPGA)
- Analog-Digital Converters (ADC)

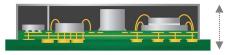
Electronics EMI Shielding Progression

Board Level Moving to Package Level

Board Level Shielding

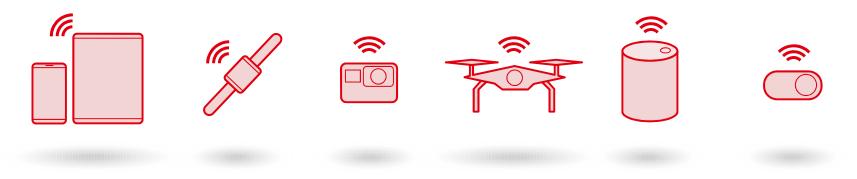
• Conductive enclosures soldered on the board


Requires large board space adding weight and thickness to the design with complex re-workability.


Package Level Shielding

• Conductive materials integrated into the package

Enables higher board density, design flexibility, simplified BOM for smaller, thinner, lighter device designs



9

Henk

End Application Examples

• Package level EMI shielding is already used in many applications, and has expansive growth potential with increase in wireless devices.

Smartphones/Tablets

Mobile computer with an operating system with features for handheld use

Wearables

Smart electronic devices that can be worn on the body for added functions to daily activities

Action Cameras

Digital camera designed for filming action while being immersed in it.

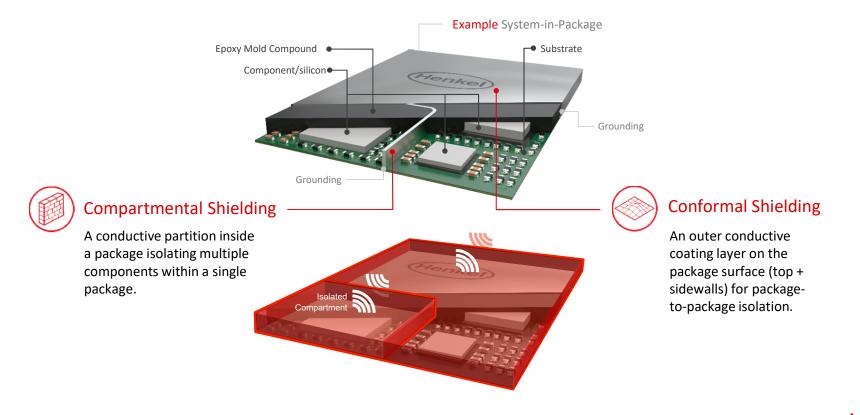
Drones/UAV

Small aircraft under remote control by a human operator or autonomously by onboard computers.

Smart Speakers

Wireless speaker and smart device that extend usage beyond audio playback for automation features.

Smart Services


Connected hardware bridging online services to physical experiences such as making a purchase.

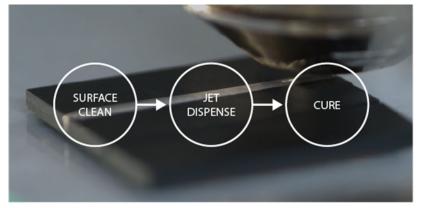
Agenda

1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

11 Henkel

Henkel's Market Enabling Solutions

12


Henk

Advantages of Henkel Solutions

Compartmental Shielding

- Advanced/custom "partition" path/shape designs
- Flexible trench-filling material formulations (e.g. low frequency shielding, color variations, process-specific properties, application-specific properties)
- Established process with proven performance

- Adaptable process (in air, room temp, strip, singulated, etc.)
- Flexible coating material formulations (e.g. low frequency shielding, color variations, process-specific properties, application-specific properties)
- Simple process with high UPH and low maintenance
- Low cost of implementation

Henl

Comparison: Sputtering vs. Specialized Spraying

Material + Application

		Provisional Solution	Henkel Solution		
Adv.	Criteria	Sputtering	Specialized Spraying		
0	Capital Investment	High	Low		
Ο	Equipment Footprint	Large: 12.5~35 m ²	Small: 2.5~4.5 m ²		
Ο	Equipment Maintenance	High	Low		
Ο	Production Scalability	Low	High		
Р	Coating Material Selection	Restricted selection (metal, alloy)	Flexible metal and polymer selection		
Ο	Substrate Surface Quality Control	Tight. Requires specific surface treatment	Less sensitive to surface contamination		
о	Process Flow	Complicated, vacuum, heating + cooling Degas Plasma Adhesion Sputter Passivate Clean Ni/SUS	Simple, no vacuum, room temperature, in air		
Р	Low Frequency Shielding	Thickness >5 um challenging	Reliable thickness >10 um		
Ο	Cost of Ownership	High	Low (up to 60% lower)		
Р	Sidewall Coverage	30~40% of top	50~60% of top		
0	Throughput (UPH)	~10 carriers per hour	~40 carriers per hour (up to 400% higher)		
Ο	Surface Treatment	Plasma required	None needed		
Р	EMI SE / Electrical Performance	50~80 dB with 5um layer	50~80 dB with 5um layer		
Р	Coating Thickness Control	Good	Good		
Р	Uniformity	Good - physical vapor deposition	Good - fine mist atomized spray deposition		
Р	Typical Final Thickness	Thin coating (3~6 um) layer	Thin coating (3~6 um) layer		
0	Market Awareness	High	Low		

O Operational

onal P Performance

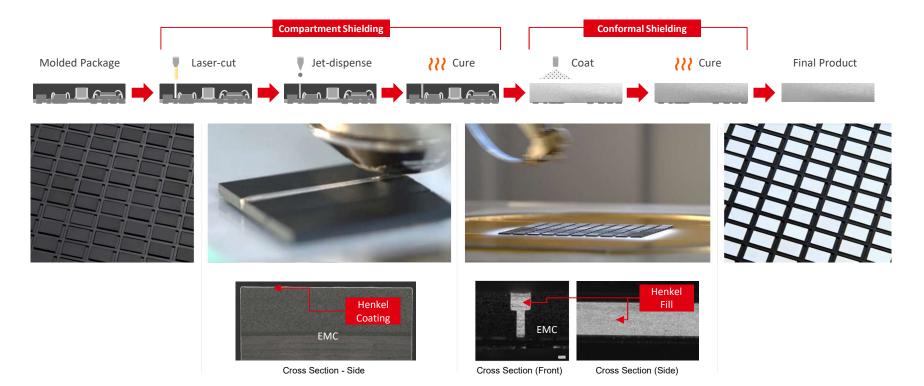
Good Moderate

Poor

14

Henke

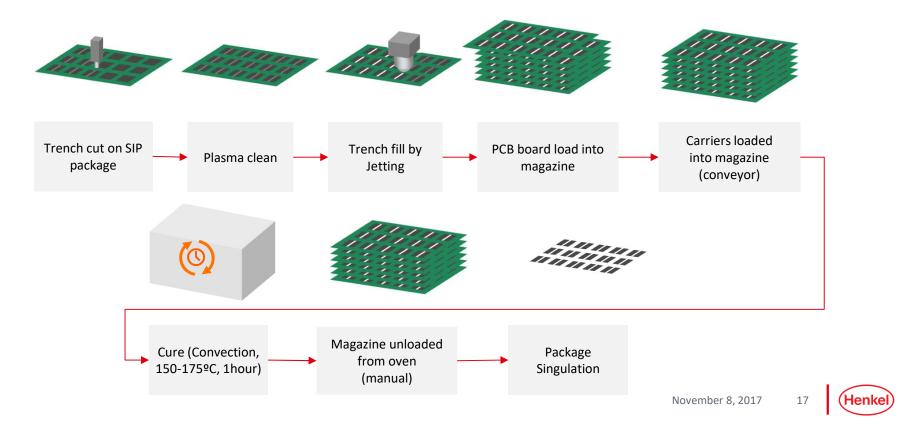
Agenda


1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

15

Henkel

Package Level EMI Shielding Implementation Process


Compartment and Conformal Shielding

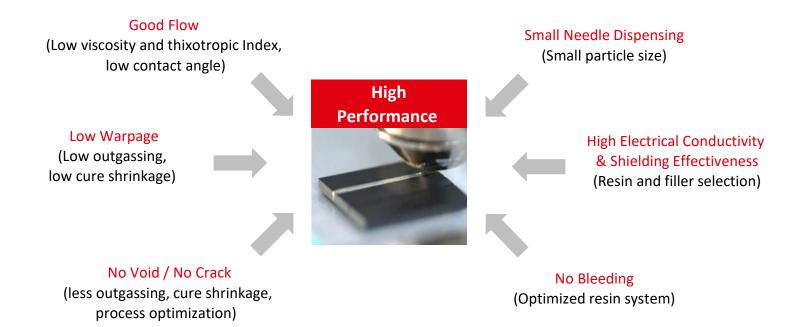
(Henke

Compartment Shielding Materials

Overall process Flow

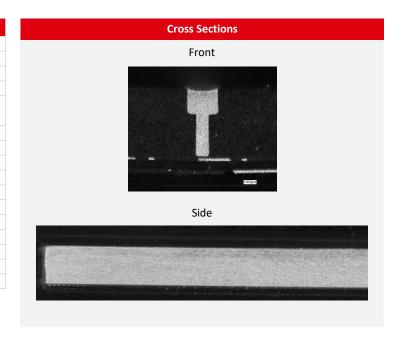
Compartment Shielding Materials Typical Trench Filling Parameters

Parameter	Typical Value
Nozzle size	3-4mil
Needle size	Long – 1.6
Fluid pressure	~10 psi
Dispense temperature	40ºC
Stage temperature	50ºC
Dispense gap	0.800mm
Valve set on/off	5/5 sec
Line type	Weight control
Dispensing paths	3 with 5:3:1 weight ratio


• Jet-dispensing parameters can be adjusted for optimal results depending on the trench design and the compartment shielding material.

Henk

Compartment Shielding Materials

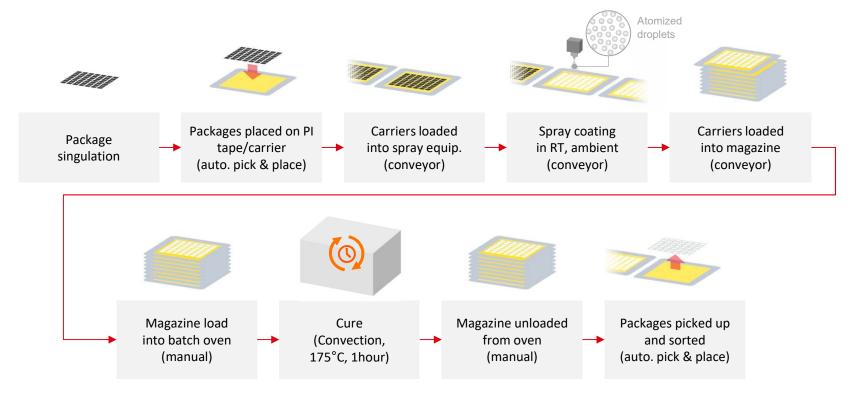

Technical Approach for High Performance

Compartment Shielding Materials Latest Addition to Henkel's EMI Shielding Portfolio

Discole Discount				
Physical Properti	es	LOCTITE ABLESTIK EMI 3620		
Technology		Electrically conductive		
Application Meth	nod	Jet dispensed		
Viscosity, 5rpm 2	5ºC (cps)	4950		
Thixotropic Index	(1.3		
Curing Condition		30 min to 175ºC, hold 60 min		
Conductivity	Volume resistivity (ohm·cm)	1X10 ⁻⁴		
	DSC on set temperature (°C)	123		
DSC	DSC peak temperature (^o C)	136		
	DSC delta H (J)	25		
	Modulus (25degC) / Mpa	4173		
DMA	Modulus (150degC) / Mpa	1395		
	Modulus (250degC) / Mpa	510		
	DSS surface	Molding compound		
Adhesion	DSS die size	3x3mm		
	DSS at 25C after cure	9.5		
Sample Availabili	ty	Now		

• Henkel material technology provides optimal performance.

20


Henl

Agenda

1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

Conformal Shielding Implementation Process

Overall Process Flow

Henke

Atomizing Spraying Technology

Ultrasonic Spray Atomization

Spray

Technology

Agnostic

Compatible with Various Spray Technologies

- Henkel materials are compatible with all types of spray equipment.
- Atomizing spray technology provides most advantages for package level EMI shielding.

Ultrasonic Spray Coating Technology

- Ultrasonic energy atomizes material into small droplets
 - Droplet size is related to material and ultrasonic energy
 - Droplets are finer and more uniform than from conventional air spray
- Air pressure sprays and shapes the droplet configuration

Note

Henkel

Material

Ultrasonic

Spray

Henkel can provide test data and recommendations on optimal spray technologies for various applications, however, Henkel does not directly sell or distribute spray machines.

Ultrasonic Spray Atomization

Process, Parameters, and Advantages

Parameters

• X-Y-Z motion

Spray speed

Interval + Pass

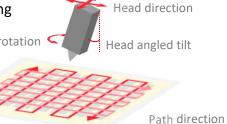
• Ultrasonic frequency

• Spray head height Spray head angle

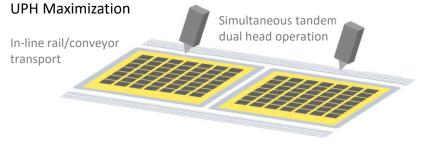
• Flow rate / pressure

Key Advantages

- Tight thickness control (single μm level)
 - Room temperature in air process
 - Low material wastage (precision coating)
- No cooling required
- No special surface treatment required
- Adjustable parameters + angle for sidewall
- No moving parts in head for stable liquid delivery


Dual spray head system

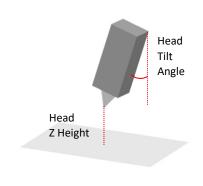
Flexible Spray Head Mechanism


Precision Digital Dispensing

Head rotation <

Rectangular and circular frame compatible

Prism 800 Dual Spray Head System


Spray Coating for Sidewall Coverage

Parameters for Full Four Sidewall Coverage

Software-Controlled Spray Parameters

Parameter	Туре	Standard Value		
Flow rate	Mariahla	0.8 – 3 ml/min	Used for	
Speed	Variable	200 – 600 mm/sec	coating thickness	
Spray Pitch		10 mm	control	
Air Pressure		400 K Pa		
Z-height	Constant	40 mm		
Head angle		30°		
Spray Direction (# of Pass)		4		

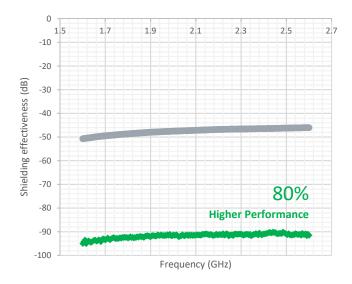
Spray Head Parameters

Spray Head Directions For 4 Sidewall Coverage

25

Henke

Conformal Shielding Material New Material vs. Conventional Material


Conventional Material vs. Henkel's Proprietary Material

Key Requirements	Conventional Spray Material		Henkel's New Spray Material	
Technology		Conductive		Conductive
Spray Technology Compatibility		Agnostic		Agnostic
Shielding Effectiveness (dB)		Poor (~50 dB)		Excellent (~90 dB)
Volume Resistivity (ohm·cm)		1 x 10 ⁻⁴		7.9 x 10⁻ ⁶
Coating Uniformity		Moderate		Good
Fine Atomization		Poor		Excellent
Required Coating Thickness		10 ~ 20 um		3 ~ 6 um
Capable Coating Thickness		10 ~ 30 um		3 ~ 30 um
Silver Settlement During Spray		Yes		No
Adhesion to EMC		5B		5B

Good

Moderate Poor

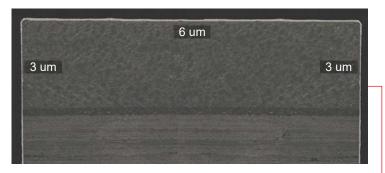
Shielding Performance (Using ASTM D5568-14)

• Conventional Ink • Henkel Formula (EMI 8880S)

26

Henke

Conformal Shielding Materials Latest Addition to Henkel's EMI Shielding Portfolio


General Properties	Material Requirements	LOCTITE ABLESTIK EMI 8660S	LOCTITE ABLESTIK EMI 8880S	
Application Method	Compatible spray technology	Agnostic	Agnostic	
Technology High EMI shielding performance		High electrical conductivity	High electrical conductivity	
Viscosity, 5rpm (cps)	Optimal resistance to flow for application method	250	550	
Thixotropic Index	Ability to hold its shape with external stress	1.2	1.3	
Curing Condition	Cured in convection oven with no ramp	175ºC, 1 hour in air (no ramp)	175ºC, 1 hour in air (no ramp)	
Filler Type	Filler technology with high conductivity	Proprietary silver	Proprietary silver	
Volume Resistivity (ohm·cm)	Extremely low resistivity similar to pure metal	1.5 x10 ⁻⁵	7.9 x10 ⁻⁶	
Shielding Effectiveness (dB)	Bulk material shielding performance	~90	~90	
Supported Thickness (µm)	Supported frequency and shielding effectiveness	Up to 30	Up to 30	
Recommended Coating Thickness (µm)	500MHz<: Ultra-thin layer with good uniformity	3~6	3~6	
Adhesion (Cross Hatch Test)	Adhesion and reliability using ASTM 3349 standard	Classification 5B (0% peel)	Classification 5B (0% peel)	
Compatible Surface	Good adhesion to various package surface types	Mold compound (Wide range)	Mold compound (Narrower range)	
Target Frequency Range	Targeting shielded frequency ranges	500 MHz ~ 10 GHz	10 MHz ~ 10 GHz	
Sample Availability	-	Now	Now	

• Henkel's new conformal shielding materials are designed to provide great electrical and reliability performance, while compatible with various spray technologies.

Conformal Shielding Materials

Henkel Material + Ultrasonic Spray Performance

Good Coating Uniformity (Top & Sidewalls)

• Uniform thickness on top and sidewalls

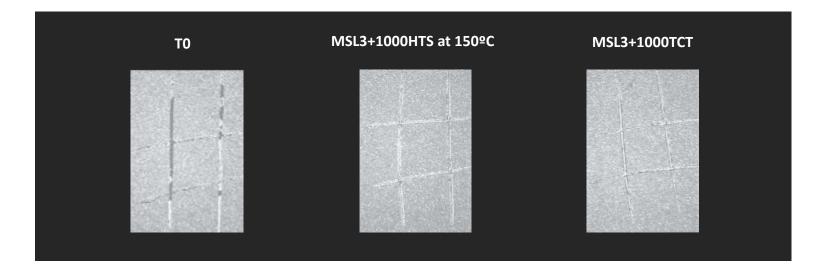
Good Coating Quality (Non-coated vs. Coated)

• Typical mold compound

Atomizing spray-coated

Atomizing spray-coated with unique material

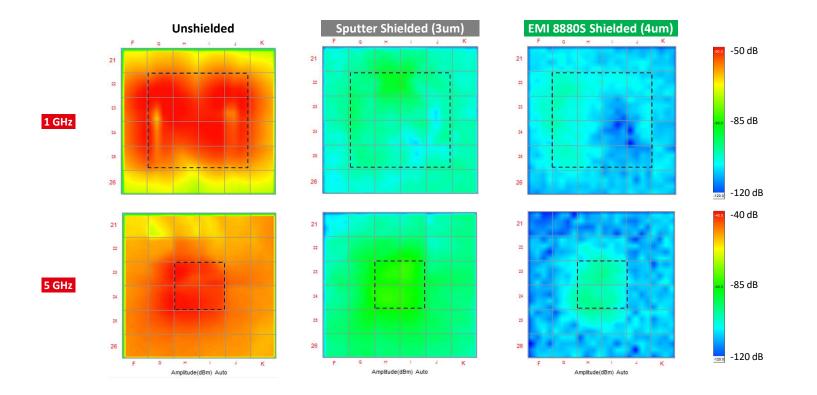
Good Laser Marking Visibility



- Material applied after laser marking.
- Good visibility of laser marking with coating layer.

Henk

Conformal Shielding Materials Adhesion Performance | Initial and After Reliability Testing


- All of the parts tested provide 5B adhesion results at time 0
- No adhesion degradation after MSL3 + 1000hr at 150°C
- No adhesion degradation after MSL3 + 1000TCTs •

29

len

Conformal Shielding Materials

Shielding Effectiveness Comparison | Near Field Probe Measurements

30

Henke

Conformal Shielding Materials

Shielding Effectiveness Test Results vs. Coating Thickness

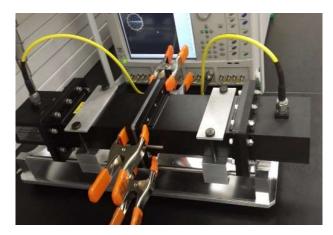
Method	Coating Layer	Coating Speed	Flow rate	Top thickness	Side thickness	EMI Shielding Effectiveness at 5G	EMI Shielding Effectiveness at 1G
		400	0.8	5 µm	3 µm	48.2	45.9
	LOCTITE	500	1.2	6 µm	3 µm	49.2	-
Spray	ABLESTIK	300	0.8	7 µm	4 µm	48.2	45.2
	EMI 8880S	400	1.2	8 µm	4 µm	51.3	46.6
		300	1.2	10 µm	5 µm	52.7	47.8
Sputter	Ti-Cu-Ti	N/A	N/A	3 µm	1 µm	43.0	41.2

- Henkel's thin coating layer provides comparable to better EMI shielding performance than typical sputtering, with the flexibility to support a wide range of thicknesses adjusted with spray parameters.
- Unlike sputtering, Henkel's materials can also be coated thicker to provide higher shielding performance for lower frequencies with higher skin depths.

Agenda

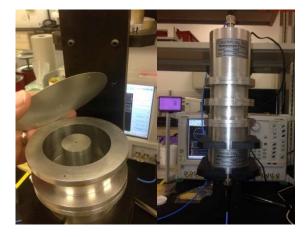
1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

32 Henkel


Shielding Effectiveness Testing Methods 1

Material Level Testing

ASTM standards are great for comparative material performance analyses. However, they have constraints in delivering representative application-level performance.


ASTM D5568-14

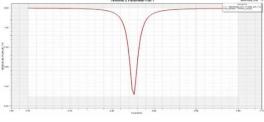
- Standard test method for measuring relative complex permittivity and magnetic permeability of solid materials at microwave frequencies using waveguides.
- Wide frequency bands 1MHz-50GHz

ASTM D4935-10

- Test method providing a procedure for measuring the EMI shielding effectiveness (SE) of a planar material for a plane, far-field EM wave.
- Low frequency 30MHz-1.5GHz

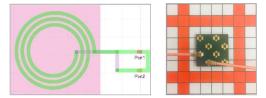
Shielding Effectiveness Testing Methods 2

Component Level Testing

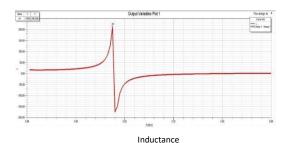

Antenna

Mid-to-high frequency performance

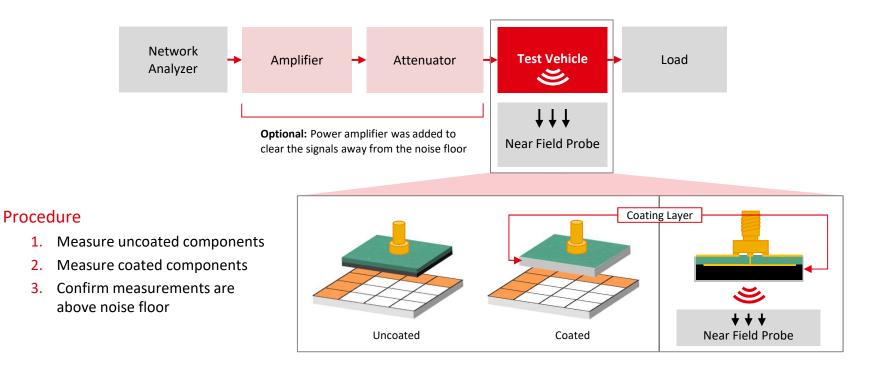
HSFF Model



Measurement


Coil/Inductor Low frequency performance

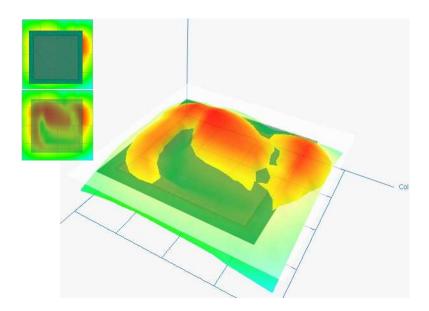
HSFF Model


- This method aligns with ٠ the IEEE 299 standard. Through the use of a custom radiating source(patch, pifa antenna, and inductor structures) and a scanner comprised of an array of loop antenna, the magnetic field at a fixed distance can be measured for a custom test vehicle or a customers application.
- Different design approaches made to target specific frequencies for testing.

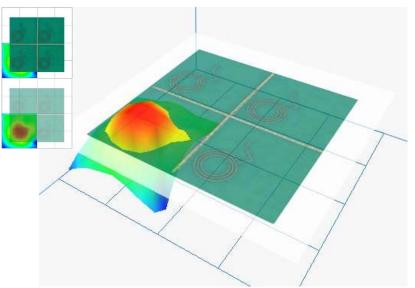
Henk

Component Level Testing

Test Configuration with Near Field Probe



Component Level Testing Near Field Probe Measurements


Antenna (Patch)

Sample measurement

Coil (Inductor)

Sample measurement

36

Henke

Agenda

1	Electromagnetic Interference and Shielding Trends
2	Henkel's Market Enabling Solutions
3	Compartmental Shielding Process, Materials, and Performance
4	Conformal Shielding Process, Materials, and Performance
5	Shielding Effectiveness Testing Methods
6	Summary

37 Henkel

Summary and Next Steps

Henkel's EMI shielding materials are optimal for package level protection enabling higher board density, design flexibility and simplified BOM for electronics miniaturization.

We want to be your solution partner of choice.

Key Benefits

- Package Level EMI shielding
 - Electronic design miniaturization
- Material technology
 - Single layer with formulation flexibility
 - Excellent reliability and adhesion performance
- Spray-coating and dispensing solutions
 - Minimal capital investment and cost of ownership
 - Easy scalability with simple process

Next Steps

- Work with Henkel as your solution partner
 - Coating trials by Henkel
 - Material sampling for customer site trials
 - Test vehicle design recommendations
 - Other consultations

Introduction

Speakers

- Jinu Choi | Market Segment Head
- Xinpei Cao | Sr. Principal Engineer
- Dan Maslyk | Sr. Application Engineer

For more information, please visit:

www.henkel-adhesives.com/loctite-emi-shielding

- Henkel solutions and value propositions
- Explainer videos
- Technical and marketing documentation for download

Henl

Thank you

