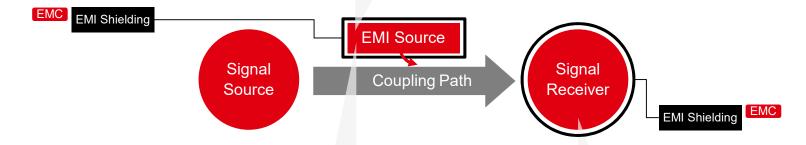
LOCTITE ABLESTIK EMI 8880S

Data Package Conformal EMI Shielding Material

November, 2017

Agenda

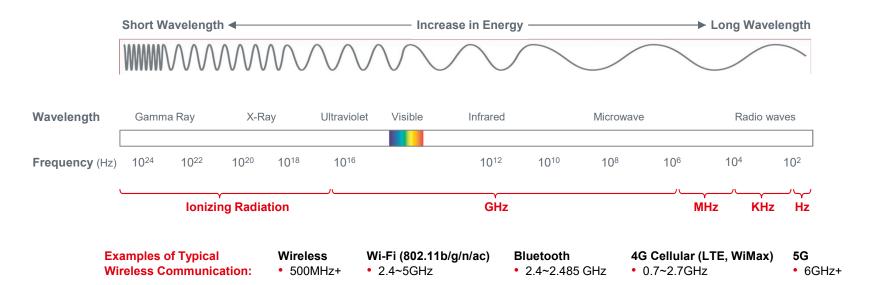

- **EMI Shielding Introduction**
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- **Material Physical Properties**
- Material Performance
- **Material Reliability**
- Summary

Electromagnetic Interference and Compatibility

Electromagnetic Interference (EMI)

- Unwanted signal (noise) emitted by electrical circuits carrying rapidly changing signals.
- Operational disruption of electronic devices when in the vicinity of an electromagnetic field caused by another device.

EMI Emission Examples


- · High-speed clocking signals
- Digital noise from processors
- Digital power supplies (higher switching frequencies)
- Transmission interferences
- Buses, interconnects and networking interfaces

EMI Impact Examples

- · Performance degradation of receiver signal processing circuits
- Unintended operation or malfunctions of electromechanical equipment, circuits, components
- Voltage breakdown or burnout of components and antennas

Electromagnetic Spectrum is a Limited Natural Resource

- The EM spectrum is a limited natural resource that must be maintained to allow reliable radio frequency communications.
- EMC regulatory bodies regulate and enforce EMC compliance with national or international standards such as International Electrotechnical Commission (IEC), Federal Communications Commission (FCC), Verband Deutscher Electrotechniker (VDE), International Special Committee on Radio Interference (CISPR), Comité Européen de Normalisation (CEN) and more.

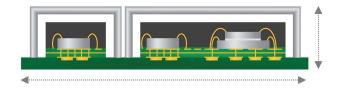
Electronics EMI Shielding Progression

Board Level Moving to Package Level

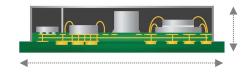
Board Level Shielding

• Conductive enclosures soldered on the board

Requires large board space adding weight and thickness to the design with complex reworkability.



• Conductive materials integrated into the package



Enables higher board density, design flexibility, simplified BOM for smaller, thinner, lighter device designs



Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

Package Level EMI Shielding Processing Flow

| Specialized Spray vs. Sputtering | Material + Application

		Henkel Practical Solution
	Sputtering	Specialized Spraying
Capital Investment	High	Low
Equipment Footprint	Large	Small
Equipment Maintenance Requirement	Strict and regular	Low
Process	Complicated, vacuum, need cooling	Simple, no vacuum, RT process
Throughput (UPH)	Low	High
Substrate Surface Quality Control	Tight. Requires specific surface treatment	Less sensitive to surface contamination
Easy Scalability	Low	High
Technology Awareness	High	New
Top Coating Thickness Control	Good	Good
Sidewall Coating Coverage	30~40% of top	50~60% of top
EMI SE / Electrical Performance	Good	Good
Coating Material Selection	Restricted selection (metal, alloy)	Flexible metal and polymer selection

Moderate

Good

| Specialized Spray vs. Conventional Spray

Material + Application

		Henkel Practical Solution
	Conventional Spray	Specialized Spray
Spray technology	Air spray	Ultrasonic spray
Atomization technology	Air pressure	Ultrasonic energy
Atomized droplet size	Micron	Submicron-Micron
Supported coating thickness (µm)	10 ~ >30μm	3 ~ >30μm
Sidewall coverage (vs. top)	10~50%	50~60%
Droplet uniformity	Poor	Good
Uniform thin coating (<10µm)	No	Yes
Coating uniformity	Poor	Good
Viscosity	<600cps	<600cps
Throughput (UPH)	High	High (~40 carriers per hour)
HVM availability	Commercial	Commercial
Equipment cost	Low	Low

Atomizing Spraying Technology

Ultrasonic Spray Atomization

Compatible with Various Spray Technologies

- Henkel materials are compatible with all types of spray equipment.
- Atomizing spray technology provides most advantages for package level EMI shielding.

Ultrasonic Spray Coating Technology

- Ultrasonic energy atomizes material into small droplets
 - Droplet size is related to material and ultrasonic energy
 - Droplets are finer and more uniform than from conventional air spray
- Air pressure sprays and shapes the droplet configuration

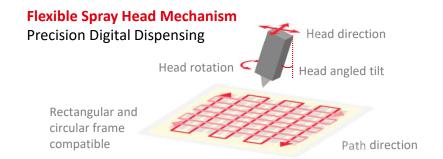
Note

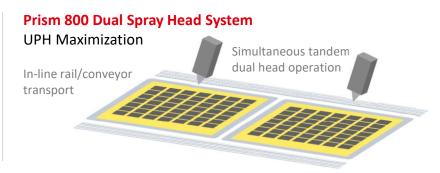
Henkel can provide test data and recommendations on optimal spray technologies for various applications, however, Henkel does not directly sell or distribute spray machines.

Ultrasonic Spray Atomization

Process, Parameters, and Advantages

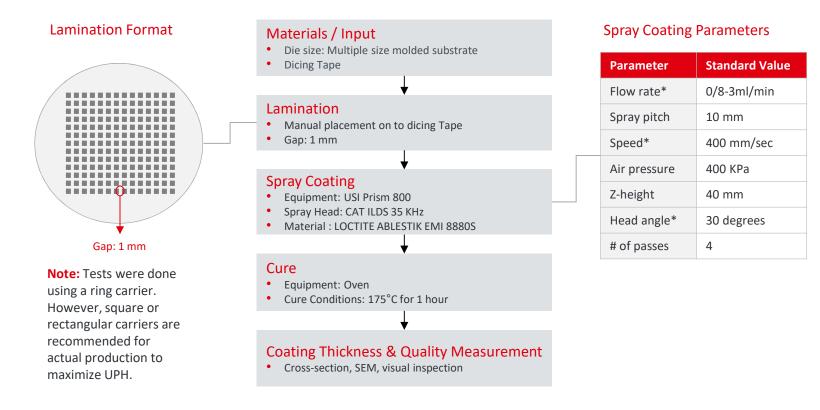
Parameters


- Ultrasonic frequency
- X-Y-Z motion
- Spray head height
- Spray head angle
- Spray speed
- Flow rate / pressure
- Interval + Pass


Key Advantages

- Tight thickness control (single μm level)
- Room temperature in air process
- Low material wastage (precision coating)
- No cooling required
- No special surface treatment required
- Adjustable parameters + angle for sidewall
- No moving parts in head for stable liquid delivery

Dual spray head system

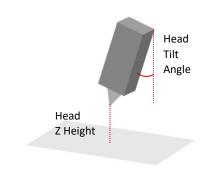


Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

Spray Processing Flow

Spray Processing Key Parameters


Parameters for Full Four Sidewall Coverage

Software-Controlled Spray Parameters

Parameter	Туре	Standard Value	
Flow rate	\/i- - -	0.8 – 3 ml/min	
Speed	Variable	200 – 600 mm/sec	
Spray Pitch		10 mm	
Air Pressure		400 K Pa	
Z-height	Constant	40 mm	
Head angle		30°	
Spray Direction (# of Pass)		4	

Used for coating thickness control

Spray Head Parameters

Spray Head Directions For 4 Sidewall Coverage

| Curing Parameters

Curing Equipment and Conditions					
Oven	Convection oven				
Atmosphere	Air				
Oven Preheat Condition	Preheat to 175°C				
Cure Profile	1hr at 175°C in preheated oven				

Storage and Handling

	Conditions	Time
Storage	-40°C	1 year
Work Life	25°C	24 hours
Open Time	25°C	8 hours

Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

Material Properties

LOCTITE ABLESTIK EMI 8880S

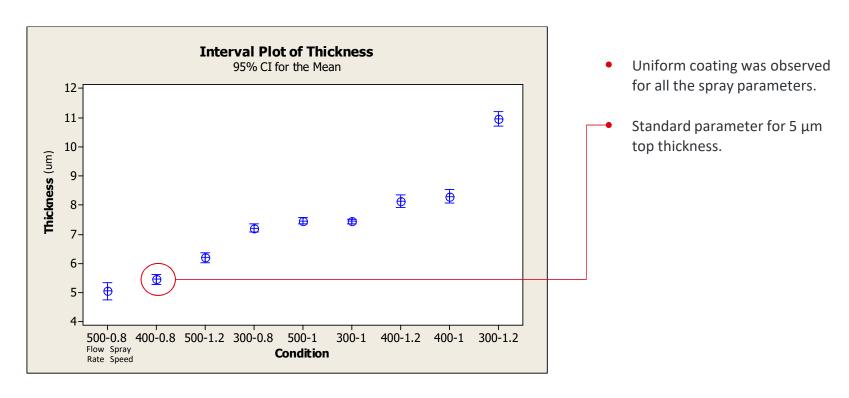
Physical Properties						
Material Name - Commercial	LOCTITE ABLELSTIK EMI 8880S					
Technology	Electrically Conductive					
Application Method Spray						
Filler Type	Proprietary Ag filler					
Volume Resistivity (Ω·cm)	7.9 x10 ⁻⁶					
Coating Thickness Range (μm) 3 ~ 10						
Rec. Dried Coating Thickness (μm)	4±1					
Viscosity, 5rpm (cps)	550					
Thixotropic Index	1.3					
Curing Condition	175ºC, 1 hour, in air					
Permeability	1					
Shielding Effectiveness (dB)	90					
Adhesion on EMC (Cross hatch) ASTM	5B					
Compatible Surface	MC					

Key Features

- Designed for spray coating
- High bulk conductivity
- Flexible coating thickness
- Excellent adhesion on untreated epoxy mold compound surface (and other materials)
- Thermal cured material

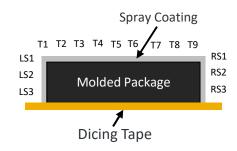
Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary



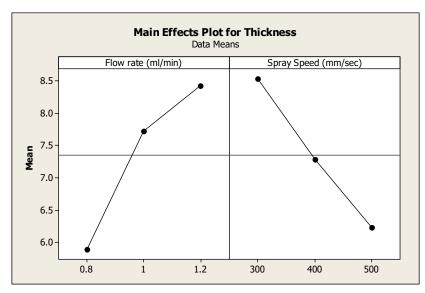
| Spray Coating Performance Spray Coating Process DOE

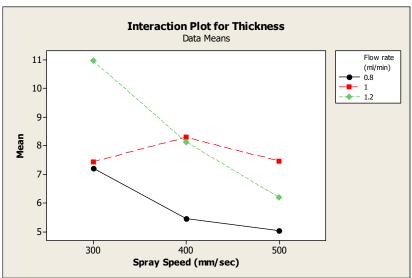
Objective: To evaluate how different parameters within the machine effects material thickness after cure.


Leg	Flow Rate (ml/min)	Spray Speed (mm/sec)
1	0.8 ml/min	300 mm/sec
2	1 ml/min	300 mm/sec
3	1.2 ml/min	300 mm/sec
4	0.8 ml/min	400 mm/sec
5	1 ml/min	400 mm/sec
6	1.2 ml/min	400 mm/sec
7	0.8 ml/min	500 mm/sec
8	1 ml/min	500 mm/sec
9	1.2 ml/min	500 mm/sec

Thickness & Uniform vs. Coating Parameters

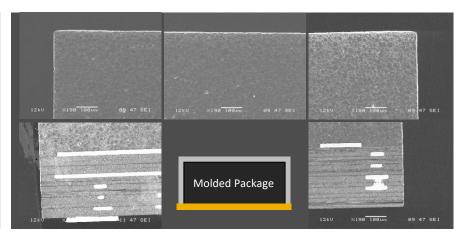
Thickness Uniformity vs. Spray Coating Parameters


100	Candisian	eft Sid	e	Тор						Right Side			
Leg	Condition	LS1	LS2	LS3	Т4	Т5	Т6	Т7	Т8	Т9	RS1	RS2	RS3
1	300-0.8	3.2	3.2	3.2	7.3	8	7	7	7	7	3.2	3.2	3.2
2	300-1	4.2	3.2	3.2	7.4	7.4	7.4	8	7.4	7.4	4.2	3.2	3.2
3	300-1.2	5.3	5.3	4.2	11.5	11.5	11.5	11.5	10.5	10.5	5.3	5.3	3.2
4	400-0.8	3.2	2.1	2.1	5.3	5.3	5.3	5.3	5.3	5.3	3.2	2.1	2.1
5	400-1	4.2	3.2	3.2	8.4	8.4	8.4	8.4	8.4	7.4	4.2	3.2	3.2
6	400-1.2	4.2	3.2	3.2	7.4	7.4	8.4	8.4	8.4	7.4	4.2	3.2	3.2
7	500-0.8	4.2	3.2	3.2	4.2	4.2	4.2	4.2	5.3	5.3	3.2	3.2	3.2
8	500-1	3.2	3.2	3.2	7.4	7.4	7.4	7.4	7.4	7.4	3.2	3.2	3.2
9	500-1.2	2.1	2.1	2.1	6.3	6.3	6.3	6.3	6.3	6.3	2.1	2.1	2.1



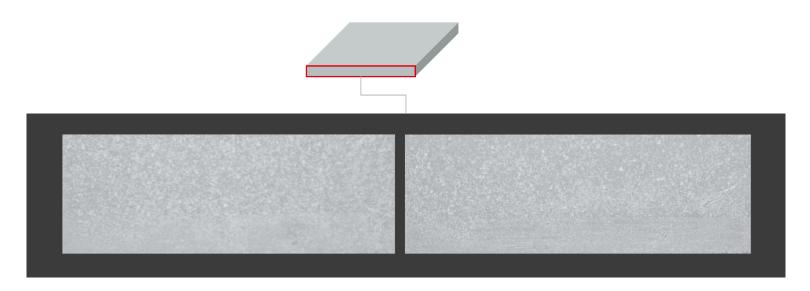
- Different points of the left, top, and right sides were measured.
- Uniform coating on both top and side wall for all the spray parameters.

Coating Thickness Main Effect and Interaction Plot



• Flow rate and spray speed have a significant impact on coating thickness. As flow rate increases thickness increases, and as spray speed increases thickness decreases.

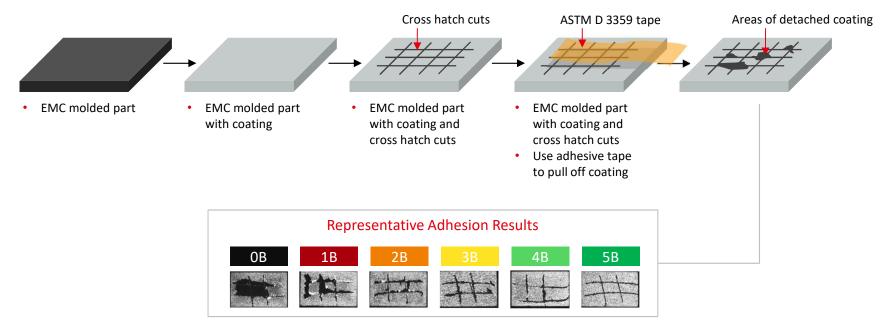
Spray Coating Quality


Recommended Spray Parameters for Different Thicknesses

Spray Para	meters	Thickness Results			
Spray Speed	Flow rate	Top thickness	Side thickness		
400	0.8	5 μm	3 μm		
500	1.2	6 μm	3 μm		
300	0.8	7 μm	3.5 μm		
400	1.2	8 μm	4 μm		
300	1.2	10 μm	5 μm		

• Uniform coating and thickness on both top and side walls.

Package Sidewall Coverage


All coated packages shows good coverage on all sides.

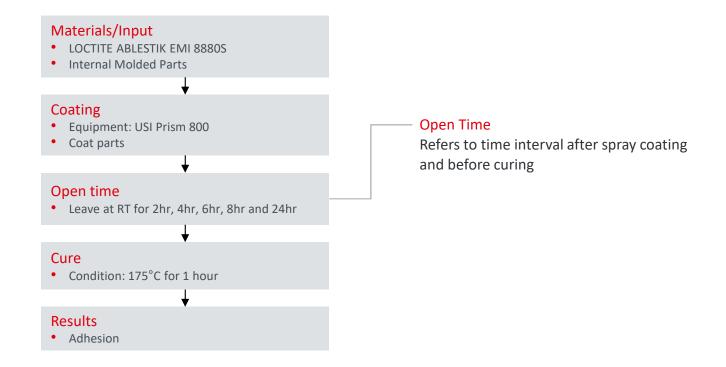
Adhesion Performance

Adhesion Testing Process Flow

Cross Hatch Test

Adhesion Performance

Initial Adhesion vs. Coating Thickness

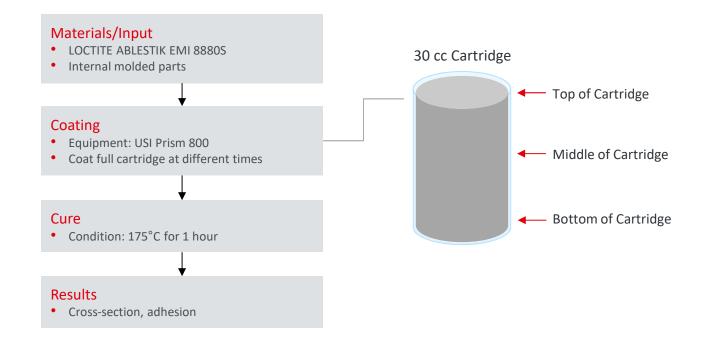


• All of the recommended coating conditions and thicknesses tested provide 5B adhesion results.

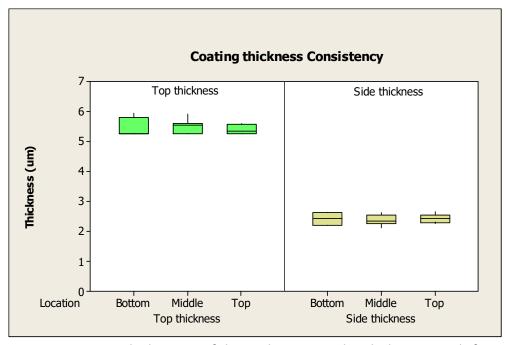

Open Time Performance

Testing Flow

Open Time Performance


Adhesion Results

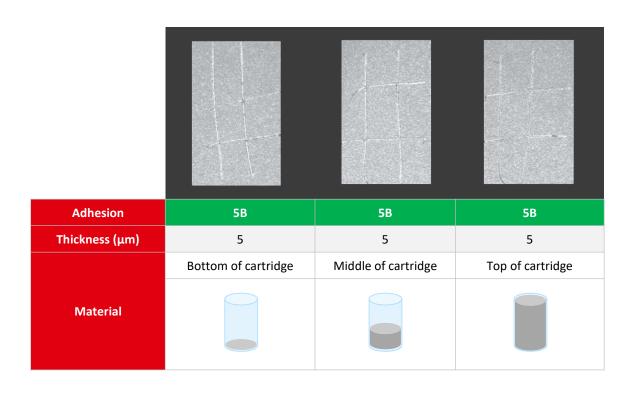
Up to 8hr opening time has no significant on adhesion.


Material Stability Performance

Testing Flow

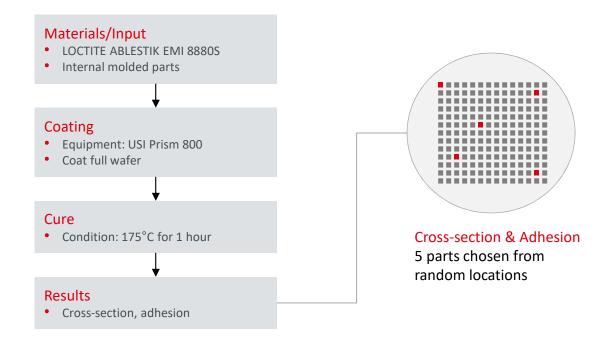
Material Stability

Coating thickness consistency



- Coating thicknesses of the package coated with the materials from different locations of the cartridge are consistent
- This indicates material is stable without stirring during spray

Material Stability


Adhesion Consistency

- Adhesion of the package coated with the materials from different location of the cartridge is consistent.
- It indicates material is stable without stirring during spray

Processing Uniformity Performance

Testing Flow

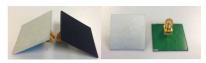
Processing Uniformity Performance

Coating thickness consistency

 Coating thickness of the package at different location on the carrier is consistent

Processing Uniformity Performance

Adhesion for Random Units


• Adhesion of the package at different location on the carrier is consistent



Material Performance

Shielding Effectiveness

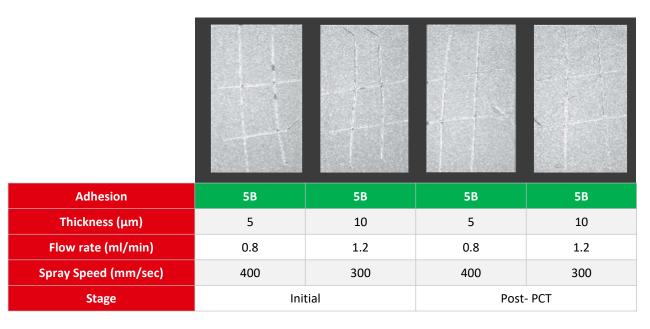
Test Method

 Uses 1GHz and 5GHz antennae and a real-time EM scanner (designed for EMI pre-compliance and diagnostics).

Test Results

Method	Coating Speed	Flow rate	Top thickness	Side thickness	EMI Shielding Effectiveness at 5G	EMI Shielding Effectiveness at 1G
	400	0.8	5 μm	3 μm	48.2	45.9
Caravad	300	0.8	7 μm	3.5 μm	48.2	45.2
Sprayed	400	1.2	8 μm	4 μm	51.3	46.6
	300	1.2	10 μm	5 μm	52.7	47.8
Sputtered	N/A	N/A	3 μm	1 μm	43	41.2

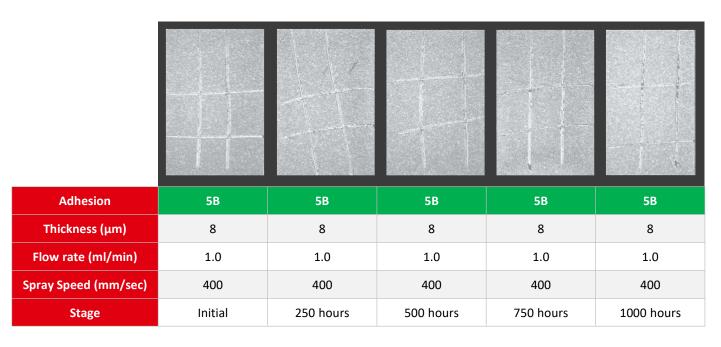
- All recommended coating parameters give better EMI performance than sputtering.
- The EMI performance is related with coating thickness.


Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

Material Reliability

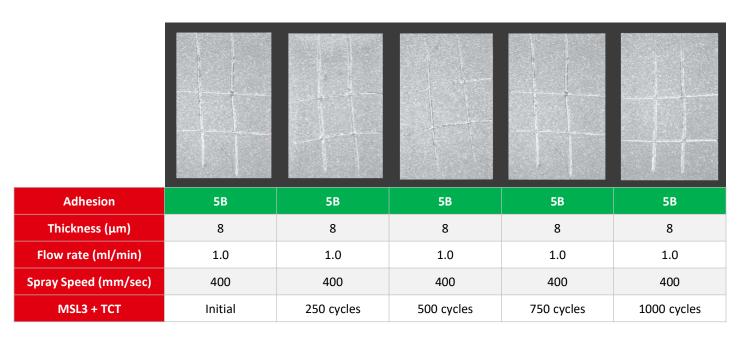
Adhesion Post Reliability Test – PCT



All units tested pass PCT testing.

Material Reliability

Adhesion Post Reliability Test – HTS testing (150°C)



All units can withstand HTS testing up to 1000 hours with good adhesion.

Material Reliability

Adhesion Post Reliability Test – MSL3 + TCT (1000 cycles)

• All units tested pass reliability up to TC-1000.

Agenda

- EMI Shielding Introduction
- Spray Solution Value Proposition and Technology Introduction
- Application Process Flow and Parameters
- Material Physical Properties
- Material Performance
- Material Reliability
- Summary

Summary

Coating Capability

- LOCTITE ABLESTIK EMI 8880S achieves uniform top and sidewall coating for all the spray parameters tested
 - o Spray speed and flow rate have significant effect on coating thickness and are the key parameters to adjust the coating thickness
 - o 5-10um uniform coating can be achieved by adjusting flow rate and spray speed

Material Robustness

- LOCTITE ABLESTIK EMI 8880S shows 8 hours opening time. No significant adhesion drop was observed after 8 hours open time
- LOCTITE ABLESTIK EMI 8880S has no filler settlement in the cartridge and shows consistent performance for the whole cartridge without stirring.

Adhesion and EMI Shielding Performance

- All the LOCTITE ABLESTIK EMI 8880S parts tested show good adhesion and reliability performance
- LOCTITE ABLESTIK EMI 8880S shows equal or better EMI performance than sputtering at both 1GHz and 5GHz.

